
Deep Learning for Mind Reading:

Using Neural Networks to Forecast

Neural Signals

Theodor Marcu

Submitted to Princeton University

Department of Computer Science

In Partial Fulfillment of the Requirements for the A.B. Degree

Advisor: Professor Brian W. Kernighan

June 2020

c© Copyright by Theodor Marcu, 2020.

All rights reserved.

Abstract

Brain-computer interfaces have seen unprecedented advances during the past decade.

A particularly interesting area of research is related to speech neuroprostheses: devices

that can translate thoughts directly into speech or text. This work contributes to

the development of speech neuroprostheses by attempting to forecast brain signals

recorded using electrocorticography (ECoG). The applications of this work include

speech forecasting, the modeling of speech producing areas in the brain, and providing

context to models used for brain-to-speech decoding. We use different neural network

models and find that ECoG forecasting is possible with mixed results. While neural

network models can predict a trend associated with the data, modeling the specific

amplitudes proved more difficult. We finish by suggesting a few models that could be

used to improve speech neuroprosthesis research.

iii

Acknowledgements

I would like to express my deep gratitude to Professor Brian W. Kernighan, my

advisor and mentor, for his patient guidance, enthusiastic encouragement, and useful

feedback.

I would like to express my very great appreciation to Professor Uri Hasson and

Professor Karthik Narasimhan for their valuable and constructive suggestions dur-

ing the development of this research work. Their willingness to give their time so

generously has been truly appreciated.

I am particularly grateful for the assistance given by Dr. Ariel Goldstein, Zaid

Zada, Eric Ham, Gina Choe, Catherine Kim, Jimmy Yang, and Bobbi Aubrey, for

their help with preprocessing, analysis, and general guidance with regard to the

project and the data used in it.

I also wish to thank Kate Northrop, my parents, and my family for their unwa-

vering love, support, and encouragement throughout my Princeton undergraduate

experience and beyond.

Finally, I want to thank my friends for the inspiration, energy, and support they

offer me every day.

The author is pleased to acknowledge that the work reported on in this paper

was substantially performed using the Princeton Research Computing resources at

Princeton University which is consortium of groups including the Princeton Institute

for Computational Science and Engineering and the Princeton University Office of

Information Technology’s Research Computing department.

iv

I pledge my honor that this paper represents my own work in accordance with

University regulations.

v

To my family.

vi

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . ix

List of Figures . x

1 Introduction 1

2 Related Work 10

3 Data Collection and Preprocessing 16

3.1 Collection . 16

3.2 Preprocessing . 19

3.3 Data Normalization and Binning . 20

4 Methods and Results 24

4.1 Problem Definition . 24

4.1.1 Time Series Modeling . 25

4.1.2 Evaluation Metrics . 28

4.2 Data Generator . 31

4.2.1 Data Batches and Samples . 32

4.2.2 Data Sampling . 33

4.3 Models and Experiments . 36

vii

4.3.1 Prediction Task . 37

4.3.2 Electrode Selection . 37

4.3.3 Baseline Approach . 38

4.3.4 Linear Regression . 40

4.3.5 Neural Networks . 42

4.3.6 Encoder-Decoder Framework 49

4.3.7 Temporal Convolutional Network 51

4.3.8 WaveNet . 54

4.4 Complete Results . 57

4.5 Limitations . 59

5 Discussion, Future Work, and Conclusion 61

5.1 Discussion and Future Work . 61

5.2 Conclusion . 63

A Code Availability 65

Bibliography 66

viii

List of Tables

4.1 Top 5 Electrodes by MAE (Baseline One-to-One Task). 38

4.2 Top 5 Electrodes by MAE (Linear Regression One-to-One Task). . . . 38

4.3 One-to-one Validation and Testing Results 57

4.4 Many-to-one Validation and Testing Results 58

ix

List of Figures

1.1 Electrocorticography (ECoG) Diagram 3

1.2 Many-to-one electrode prediction example using a simple model. . . . 6

1.3 WaveNet Many-to-one Forecasting (50s). 9

4.1 Kernel Density Estimate of the Pearson r correlation coefficients for

an LSTM Encoder-Decoder model validation batch. 30

4.2 LSTM EncoderDecoder Modelgenerated graph of predictions vs. targets. 31

4.3 Window-based sequence prediction diagram. 31

4.4 Batch-to-file mapping diagram. 35

4.5 Baseline Prediction Example (6 seconds) 39

4.6 Baseline Prediction Example (6 seconds, Poor Performance) 39

4.7 Baseline Prediction Example (50s Sequence, Validation Set) 40

4.8 Baseline Prediction Example (50s Sequence, Test Set) 41

4.9 Linear Regression Prediction Example (50s Sequence, Validation Set) 41

4.10 Linear Regression Prediction Example (50s Sequence, Test Set) . . . 42

4.11 Artificial Neuron . 43

4.12 Neural Network Architecture with Two Hidden Layers 44

4.13 Training vs. Validation Loss for Baseline One-to-one Neural Network

Model . 46

4.14 Baseline Neural Network Prediction Example (50s Sequence, Valida-

tion Set) . 46

x

4.15 Baseline Neural Network Prediction Example (50s Sequence, Test Set) 47

4.16 Baseline Neural Network Many-to-one Prediction Example (50s Se-

quence, Validation Set) . 48

4.17 Baseline Neural Network Many-to-one Prediction Example (50s Se-

quence, Test Set) . 48

4.18 LSTM Encoder-Decoder Neural Network One-to-one Prediction Ex-

ample (50s Sequence, Validation Set) 50

4.19 LSTM Encoder-Decoder Neural Network One-to-one Prediction Ex-

ample (50s Sequence, Test Set) . 50

4.20 TCN Neural Network One-to-one Prediction Example (50s Sequence,

Validation Set) . 53

4.21 TCN Neural Network One-to-one Prediction Example (50s Sequence,

Test Set) . 53

4.22 TCN Neural Network Many-to-one Prediction Example (50s Sequence,

Validation Set) . 54

4.23 TCN Neural Network Many-to-one Prediction Example (50s Sequence,

Test Set) . 54

4.24 WaveNet One-to-one Prediction Example (50s Sequence, Validation Set) 55

4.25 WaveNet One-to-one Prediction Example (50s Sequence, Test Set) . . 56

4.26 WaveNet Many-to-one Prediction Example (50s Sequence, Validation

Set) . 56

4.27 WaveNet Many-to-one Prediction Example (50s Sequence, Test Set) . 57

xi

Chapter 1

Introduction

Brain-computer interfaces (BCI) represent devices or processes that allow the brain

and central nervous system (CNS) to transmit and receive information directly from

an external device [1, 2, 3, 4, 5]. BCIs allow neuroscientists and neuroengineers to

study the human brain and improve the quality of life for people suffering from motor

speech disorders or neurodegenerative diseases [6, 7, 8, 9, 10, 11]. In addition to

health-related applications, BCIs have also been of interest to computer scientists

and researchers interested in artificial intelligence because of their applications in

enhancing human intelligence with the help of computers [12, 13].

BCIs have a wide range of uses today: neuroprosthetic applications, neurofeed-

back, closed- and open-loop brain stimulation, pathophysiology, neuroplasticity, and

neural coding [1]. Neuroprosthetic applications refer to tools and devices that can

augment or enhance the functions performed by the neural system. These range from

devices that are widely-used, like cochlear implants, to applications that are still

undergoing research and development, such as speech prostheses and robotic limbs

[14].

1

Neuroprosthetics and Speech

Research in the past decade has shown incredible advances in neuroprosthetics. The

goal of neuroprosthetics is to bypass intermediaries and directly connect a patient’s

brain to a computer in order to facilitate communication, mobility, and other functions

that might have been lost as a result of disease or illness [15]. For instance, Nuyujukian

et al. created a system that allows paralyzed individuals to control a commercial-grade

tablet and navigate the user interface together with all the available applications

using a Bluetooth-based cursor [16]. The real-time aspect of this task showcases

the incredible advances made in the creation of brain-computer interfaces in the last

decade.

A particularly interesting area of research is related to speech prostheses. Current

state-of-the art devices rely on eye tracking or modified computer peripherals [17].

These technologies provide a low bandwidth medium and might not work for those

suffering from serious cases of total paralysis with loss of speech. For example, most

users of current assistive technologies can barely attain a transmission rate of 10 words

per minute, which is far slower than the average 150 words per minute for natural

speech [17]. Furthermore, typed speech carries a limited emotional and contextual

load when compared to spoken speech, which reduces the subjects’ ability to express

themselves fully. While current technologies allow paralyzed individuals to use a

commercial device in real-time, the bandwidth for such devices is limited to each

individual’s ability to move a cursor on a screen [18]. As many of us are aware, trying

to use a cursor to compose text can be a daunting task. This is because our ability

to think and speak far outpaces our ability to quickly move a pointer on the screen

across a keyboard.

An interesting solution to this problem is creating a speech neuroprosthesis. A

speech neuroprosthesis allows subjects to speak or type with the help of recordings of

brain activity rather than modified computer peripherals [19]. By translating neural

2

signals directly into speech and text, the prosthesis would drastically improve the

communication rate of speech prostheses.

Some of the early work on speech synthesis focused on prediction frequencies

in the human brain associated with the production of vowels, phoneme classifica-

tion using intracortical microelectrode arrays, and decoding vowels and consonants

[20, 21, 22]. More recently, studies have been done on predicting words and sentences

using intracortical brain activity [23, 17, 24, 25]. These studies rely on electrocor-

ticography (ECoG) signals in order to predict speech using techniques from automatic

speech recognition (ASR), neural networks, principal component analysis (PCA), and

encoder-decoder frameworks, among others. For reference, the placement of an ECoG

array is shown in Figure 1.1.

Figure 1.1: Diagram that shows the placement of an electrocorticography (ECoG)
sensor array. Not the grid-like pattern of the sensors. Image credits: Blaus (2014)

The Limitations of Current Work

One of the limitations of current work in the area of speech neuroprostheses is related

to the limited datasets used in the studies. Most research relies on restrictive sentence

3

and question-and-answer datasets like the MOCHA-Timit database [27]. For example,

the work done by Angrick et al. relies on 6 participants who read between 244 and

372 words, which represents a limited dataset for analytic and practical purposes.

The paper written by Anumanchipalli et al. relies on 5 participants who read sets of

sentences from the MOCHA-Timit [29] database, scene descriptions, and free-response

interviews. Each participant had about 1000 sentences each. While Anumanchipalli

et al.’s paper uses considerably more data than the work done by Angrick et al., the

fact that it relies mostly on participants reading texts aloud rather than free-form

conversations reduces the real-world applicability of the results.

Another limitation of current work in this area is related to understanding how

speech is modeled and represented in the brain. While performing brain-to-text and

brain-to-speech conversions is now possible thanks to the work of Anumanchipalli

et al., Angrick et al., Makin et al., among others, their approach is closer to building

a classifier than can match brain signals to speech rather than understanding the

mechanisms that lead to the production of speech. One application of neural networks

in cognitive science and neuroscience is comparing the internal representations of

artificial models to those of real brains [30]. Applied to brain-to-speech applications,

leveraging neural network models to understand the representations of speech could

provide insight into the production of speech in the brain, allowing us to build models

that not only use brain signals to classify specific sounds, but can extract complex

sentences and even full thoughts.

Last but not least, word production is heavily reliant on context. More specifically,

a word at time t is going to be produced by a human with knowledge of words (and

thoughts) at times {t−1, t−2, t−3, ...}, but also at times {t+1, t+2, t+3, ...}. Current

work on synthesizing speech or text from ECoG recordings either ignores future time

steps ([25], [28]), or uses target words from the future in order to synthesize speech

([17]). While the former approach does not include context, the latter approach

4

would be unrealistic for a practical brain-machine interface system since it assumes

knowledge of future target words.

Research Goals

Our work aims to improve upon these limitations by attempting to predict the ECoG

signals that are at the source of speech by using considerably more data. To this end,

we use the data from a set of 40 patients whose brain signals were recorded 24 hours

a day for an entire week. Their brain signals were recorded using intracranial ECoG

electrodes with the goal of treating epilepsy [31]. During the observation period each

patient was fitted with 100-200 electrodes on various brain locations. The electrodes

recorded brain signals in Micro-Volts. During the same time period the patients’

speech was also recorded, which provided us with free-form conversations that are

representative of real-world scenarios.

While previous work [28, 17, 25] has focused mostly on brain-to-speech and brain-

to-text synthetization, our work aims to contribute to the effort of creating practical

speech neuroprostheses by predicting the ECoG responsible for speech. The goal of

this method is to address all the limitations outlined above. First, we aim to provide

more context to different models used to extract speech and text from neural activity.

Second, we hope to better understand the mechanisms that lead to speech generation

in the human neural system. Third, we aim to address some of the limitations of

using limited sentence sets by analyzing data from free-flowing speech.

In order to predict brain signals, we leverage both statistical and deep learn-

ing models which are appropriate for time series forecasting. These include Linear

Regression, LSTM (Long Short-Term Memory), and TCN (Temporal Convolutional

Network) models, among others [32, 33]. Furthermore, since we have access to mul-

tiple ECoG electrodes per patient, we attempt both one-to-one and many-to-one

forecasting. One-to-one forecasting refers to using information from one electrode to

5

forecast the series for the same electrode in the future, while many-to-one forecasting

refers to using multiple electrodes to predict the signal of one electrode.

Overview of Results

Our results show that forecasting ECoG signals using different models can be achieved

with varying degrees of success. In both one-to-one and many-to-one scenarios, we

achieve a mean absolute error (MAE) of as low as 0.2 for some electrode samples,

which highlights relatively good prediction rate. Similarly, we can calculate correla-

tion coefficients between −0.9 and 0.9 for pairs of predicted and target time series,

where −1 indicates a perfect negative correlation, 0 indicates no correlation, and 1

indicates a perfect positive correlation. This means that we are able to extract trends

from the data, which can help us address all the limitations mentioned above. One

example is visible in Figure 1.2.

Figure 1.2: Example of an electrode prediction generated by a simple many-to-one
neural network model. The MAE for this specific sample is 0.29, while the correlation
is 0.6, which indicates a positive correlation between the target and predicted time
series.

While specific samples and electrodes show that it is possible to predict some

signals, statistics that look at multiple samples from one batch (between 512 samples

6

and 1024 samples) or full conversations show that the MAE jumps higher while the

correlation is closer to 0. Based on test set performance, the top neural-network

model for both many-to-one and one-to-one prediction is WaveNet, which was initially

developed by Google DeepMind to generate raw audio waveforms [34]. WaveNet

achieves a MAE as low as 0.572 (Correlation Coefficient: 0.504. Closer to −1 or 1 is

better.) on the validation set and 0.744 (Correlation Coefficient: 0.175) on the test set

for one-to-one predictions. For many-to-one forecasting, WaveNet achieves a MAE

of 0.641 for the validation set and 0.747 for the test set, which is similar to results

for one-to-one prediction. Complete results are shown and discussed in Chapter 4

(Section 4.4) and Chapter 5 (Section 5.1).

While WaveNet performed very well compared to other neural-network based mod-

els, one-to-one Linear Regression performed best across the board, achieving a MAE

of 0.469 on the test set with a correlation coefficient of 0.598. We discuss possible

reasons for this in Chapter 5.1.

The overall results of these experiments were mixed, since we did not see the

forecasting ability we were hoping to. While direct speech and text decoding from the

predicted signal is unlikely, the results provide an avenue for future work that will lead

to better speech neuroprosthetics. For example, our work could be used to improve

speech decoding for real-time models described by Anumanchipalli et al., Moses et al.

and Makin et al.. This is because the predicted sequences could be leveraged to

provide context and guide the neural network architectures used to extract speech

brain signals.

Predicting ECoG signals might also be difficult because of the nature of the record-

ings. The electrodes in an ECoG sensor array capture signals from the neurons present

in the specific area where the array was placed, and while the signal-to-noise ratio for

ECoG is better than for other types of sensors, it is still possible that these sensors

may capture noise and/or irrelevant signals [35, 36]. Furthermore, most research on

7

ECoG signal decoding has been done in the context of decoding motor movements

and speech, which highlights the wide range of signals that can be found at that

level [36]. This implies that predicting general signals might be hard, as they encode

multiple different streams of information at once.

Similar to eavesdropping on a wireless or wired signal, eavesdropping on the neural

signal can provide a high signal-to-noise ratio, but it might not provide insight into

the contents of the signal. This is analogous to detecting and attempting to decrypt

data packets by eavesdropping on a Wi-Fi or wired network without the necessary

encryption key [37, 38]. In the case of neural signals, focusing and guiding neural

network models during training with the help of external stimuli like movement fac-

tors, speech, or kinematics can act like a key that enables the models to differentiate

between relevant signals and noise.

In order to solve this problem, a model is described in Section 5.2 that would

leverage speech transcripts during training to guide the neural network model for a

forecasting task. While this information would not be used for the final evaluation,

it could provide a structured way to forecast ECoG signals for speech. A successful

model could also be translated to other type of information, like kinematics and motor

movements.

The shape of the forecasted signal across longer time periods (e.g. 50s) could be

considered evidence for the idea that ECoG time series prediction requires guidance

from other variables. Figure 1.3 shows that while the predicted signal does not easily

capture the amplitudes of the input signal well, it is still able to model the overall

trend. This means that the individual amplitudes might represent different signals

rather than one cohesive signal.

Poor prediction metrics could also be linked to the individual electrodes being

monitored and the respective subject used. While ECoG signals are generally con-

sistent across long periods of time, we know that different electrodes can sometimes

8

Figure 1.3: WaveNet Many-to-one Forecasting. The total duration of the time series
is 50s and has been produced using a moving window prediction (more details in
Chapter 4).

.

become unreliable [39]. Furthermore, the fact that the subject suffers from drug-

resistant epilepsy could also imply damage or erratic brain activations in the areas

being monitored, which may reduce the signal-to-noise ratio in the data [35]. The

limitations of the current study are outlined in Section 4.5 and discussed in Section

5.1.

Structure

The following chapters contain an overview of the background behind this problem

and the methods and experiments used in this study. Chapter 2 includes an overview

of past work as it relates to brain-computer interfaces and speech neuroprostheses.

Chapter 3 contains information about the collection and preprocessing of the data

used in the study. Chapter 4 outlines the experiments, methods, and results per-

formed on the data, while Chapter 5 provides an in-depth discussion of the results

and ideas for future work.

9

Chapter 2

Related Work

This chapter surveys past work done in the areas of BCIs, neuroscience, and deep

learning. We put particular emphasis on analyzing work related to alternative com-

munication devices and speech neuroprostheses.

The State of Brain-Computer Interfaces

Brain-computer interfaces have seen unprecedented advancements during the past

decade. For instance, neuroprosthetics are showing signs of leaving the realm of deep

research and development and starting to become more usable and available to those

who need them. For example, Gilja et al. have proven that a prosthesis that was

initially developed for animal model studies could be translated to humans, allowing

them to achieve unprecedented performance with a cursor-control system that re-

lies on intracortical microelectrode arrays placed in the motor cortex [40]. Similarly,

Jarosiewicz et al. brought BCIs closer to mass-adoption by reducing the number of

recalibrations needed to use a cursor-control prosthesis that relies on intracortical

microelectrode arrays [41]. While previously users could not compose long texts be-

cause the neural signal would change, which would require recalibration, Jarosiewicz

10

et al. combined multiple calibration methods to enable a continuous experience that

improved the quality of life of the patients.

Another result that stands out is the development of a robotic arm controlled

by intracortical brain signals that can be used by a subject to lift a glass and drink

water from it [42]. Given the complexity of the fine motor movements associated with

this task, this result is remarkable. Similarly, visual prostheses promise to give the

blind their sight back through devices that connect directly to their visual cortex,

optic nerve, or retina, stimulating them in order to produce shapes and colors with

the help of an external camera [43]. The most advanced prosthesis at this moment

is the Argus II, which can restore sight in patients who suffer from inherited retinal

degenerative disorders that lead to legal blindness [44].

Closed- and open-loop brain stimulation is another form of invasive BCI. Both act

subconsciously and can help patients suffering from brain disorders like Parkinson’s

and epilepsy through electrodes that can deliver electrical stimuli within the brain

[45, 46, 47]. Deep brain stimulation (DBS) is the most common form of closed-loop

brain stimulation and has been shown to be similar to drugs in some cases when

it comes to treating Parkinson’s [46]. There is also evidence that closed-loop brain

stimulation can help patients suffering from depression [48].

The benefits of non-invasive brain-computer interfaces are becoming increasingly

visible as well. For example, neurofeedback is concerned with enabling a subject to

manage, observe, and influence their conscious and subconscious brain state with the

help of auditory, visual, and tactile stimuli that are controlled indirectly by recordings

of their neural activity [49]. Neurofeedback often relies on electroencephalography

(EEG) sensors which are placed around a person’s head, directly on the scalp [8].

This is in contrast with more invasive methods like Deep Brain Stimulation or ECoG.

Neurofeedback can be used to alter or create new habits, help with meditation, and

even help smokers quit [50, 51]. Additionally, neurofeedback has been shown to be

11

useful in the treatment of attention deficit disorders, and a simple online search can

yield links to neurofeedback clinics and treatments [52].

BCIs may also help us better understand neurological disorders so that we can

develop more effective cures. For example, pathophysiology can benefit from BCIs

that can record and observe the interactions between different groups of neurons [1].

This can enable researchers and scientists to better understand the causes behind

different illnesses, paving the road for better therapies and ways to control symp-

toms. Similarly, BCIs can provide insight into neuroplasticity, which is the study of

how synapses, neurons, and representations change over time in response to different

stimuli and events [53]. This has implications in the study of learning, memory, and

the brain’s ability to heal.

The Role of Brain-Computer Interfaces in Communication

Research into augmentative and alternative communication (AAC) devices shows that

there is a clear need for improved speech prostheses. Movement-sensing technologies,

eye tracking, switch scanning, and supplemented speech recognition (SSR) represent

different AAC branches that can help subjects with complex communication needs

[18]. Nonetheless, their bandwidth is limited. For example, eye tracking attains an

accuracy of 63% when used alone, which provides a significant obstacle for communi-

cation to those who need it [18]. When used with secondary technologies like switch

scanning, eye tracking can reach 93% accuracy, but this still implies a reduced speech

rate and increased cognitive load for the user.

While eye tracking works for some users, others need to rely on other technolo-

gies because of their individual circumstances. For example, supplemented speech

recognition (SSR) helps those with severe motor impairments use speech-recognition

systems more easily [18]. According to Koch Fager et al., SSRs combine classical

speech recognition with other inputs in order to increase usability for those who need

12

it. An example is a device that uses a hybrid approach, combining a keyboard with

speech-recognition. The user can type the first letter of the word he wants to say,

say the word, and the choose between the top most likely candidates. While inge-

nious, this user experience is also extremely laborious, which highlights the need for

solutions with less friction [18].

BCIs as alternative communication devices are not a new idea [18, 54, 55]. For

example, Orhan et al. and Peters et al. have developed non-invasive devices that rely

on EEG sensors in order to enable people to type words and sentences. Nevertheless,

while probably faster than eye tracking devices, this method is still not on par with

human speech.

Brain-to-Speech: Extracting Speech from Brain Signal Recordings

One of the most promising research areas for increasing the quality and rate of speech

for users who rely on today’s speech prostheses is translating signals from the brain

into speech directly [19]. This has been shown to be possible using different machine

learning models that can decode brain signal data directly from subjects [17, 24, 28,

15].

The background for using statistical and computational methods for encoding and

decoding brain signals is based on models of speech and sound representation in the

human auditory cortex and the Superior Temporal Gyrus (STG). [58, 59]. These

areas are sensitive to sound and speech in general, and according to Sjerps et al.

they are shown to play a role in the normalization of sounds so that humans can

understand language irrespective of speaker. Furthermore, according to Yi et al.,

the STG has been shown to leverage temporally recurrent connections in order to

gain a coherent perception speech. This aspect motivates the use of recurrent neural

network architectures in this work.

13

Another aspect that motivates the use of neural network architecture for predicting

brain signals is related to the fact that brain signal prediction represents a sequence-

to-sequence task. Sequence-to-sequence tasks are particularly well-suited for neural

network architectures, especially for recursive neural network architectures [60, 61].

Previous work in this area focused on encoding and decoding brain signals into

speech [17, 28, 8, 62]. Some approaches rely on neural networks (Anumanchipalli

et al. [17], Angrick et al. [28]), while other rely on more traditional tools like the

Viterbi algorithm (Moses et al. [24]), the ReFIT Kalman Filter, or a Hidden Markov

Model (HMM) (Pandarinath et al. [62]).

Anumanchipalli et al. have used two bidirectional long short-term memory

(bLSTM) recurrent neural networks to decode articulatory kinematic features and

acoustic features from the brain. This architecture enables the second bLSTM to

learn both the transformation from kinematics to sounds and also correct the articu-

latory estimation errors made by the first neural network. While the results of their

research are very promising, one disadvantage is that the bLSTM leaks information

from the future, which reduces the applicability of the results in practical scenarios.

A particularly interesting example of using deep learning to extract speech from

brain signals is represented in the work done by Makin et al. [25]. Their research

proves that speech can be decoded directly from ECoG data from epilepsy patients.

The authors evaluated their work using the word error rate (WER) metric, which was

as low as 3% (5% is professional-level speech transcription), which indicates another

set of very promising results.

Makin et al. use an encoder-decoder framework with three main layers: a temporal

convolution layer that can learn local regularities in the data across time and down-

samples the input data to 16Hz, an encoder recurrent neural network (RNN) that

provides a high-dimensional encoding of the entire downsampled sequence, and a de-

coder RNN with teacher forcing that is responsible for predicting words [25]. Teacher

14

forcing refers to exposing the model to some part of the predicted data during train-

ing in order to help it understand what regularities to look for. A noteworthy aspect

of their model pipeline is that they force the RNN encoder to predict speech during

training. According to Makin et al., this approach helps guide the neural network

model during training, helping it distinguish the signal from the noise.

Another exciting result comes from Angrick et al. [28]. The authors relied on a

densely connected convolutional neural network and a WaveNet vocoder in order to

transform the recorded neural signals into an audio waveform. A densely connected

convolutional neural network was trained on each participant independently because

the position of the electrodes and underlying brain topologies differ from person to

person. Then, a WaveNet vocoder is used in order to reconstruct the audio waveform

from the spectral features of speech. The paper states that there is no need to train

multiple vocoders since no mapping between individual and spectral features had to

be learned.

These results highlight the exciting state of speech neuroprosthesis research and

motivate further work in this area. Next, we evaluate the role of ECoG data in speech

synthesis research and discuss preprocessing for the purpose of training and validation

using baseline and neural network models similar to the ones described above.

15

Chapter 3

Data Collection and Preprocessing

3.1 Collection

The data used in this thesis was provided by the NYU Medical Epilepsy Unit in

collaboration with the Hasson Lab in the Princeton Neuroscience Institute. The data

consists of electrical activity recorded from the brain and audio recordings of over

40 subjects suffering from epilepsy. The subjects’ brain activity was recorded using

electrocorticography (ECoG) sensors with the goal of identifying brain areas that

might be responsible for epileptic attacks. According to Kuruvilla and Flink, pre- and

post-operative ECoG recordings enable surgeons and doctors to better understand the

location and limits of the epileptogenic areas in the brain, allowing them to reduce

the long-term side-effects of the surgery on the patients [31].

Electrocorticography Signals

This work relies on ECoG data because of its use in the study of electrical activity

that results from brain activation [35]. According to Crone et al., ECoG recordings

have been used to study motor, auditory, visual, and language-related activity in

the brain with promising results. This makes them appropriate for exploring the

16

development of a speech neuroprosthesis. Furthermore, the long-term consistency of

the ECoG signal recordings also makes it viable for this study [39].

Based on the research done by Jeon et al., the signal resulting from ECoG

recordings has been found to be useful for ERD/EDS (Event-related Desynchroniza-

tion/Synchronization), which refers to the change in amplitude of specific cortical µ

and β rhythms during self-paced voluntary activity. Event-related responses have

been found in both low-γ (low-gamma) frequencies (< 60 Hz) and high-γ (high-

gamma) frequencies (between 60 Hz and 200 Hz). γ (gamma) frequencies are a

particular type of neural oscillations (also known as brainwaves), which correspond to

”synchronous activity of neuronal assemblies that are both intrinsically coupled and

coupled by a common input” [64]. More specifically, according to Arnal et al. γ-band

activity is considered to result from the interaction between inhibitory neurons and

pyramidal cells, which is closely aligned with speech-related timescales. Mid-to-high-

γ activity (40 − 200 Hz) is of particular interest because it contains event-related

activity focused on speech production and comprehension [35, 65, 66, 67, 68, 69].

Each patient’s brain activity was recorded using electrodes placed directly on the

surface of the brain for an entire week, twenty-four hours per day for seven days. There

are different types of ECoG electrode arrays that may be used to monitor brain activ-

ity. The data collected for this work comes from subdural electrodes placed directly

underneath the dura mater (the outermost membrane enveloping the brain and the

spinal cord) and right above the arachnoid membrane, which is the outermost of the

meninges responsible for protecting the brain [35, 70]. Compared to other types of

sensors like Electroencephalography (EEG), subdural ECoG has better spatial reso-

lution because it is closer to the source of the signal compared to other sensors, which

are placed further apart from the brain. For example, EEG is usually accomplished

with the help of electrodes placed on the scalp. This means that the signal is blurred

by the skin, skull, and dura mater [35, 71]. According to research cited by Crone

17

et al., the signal-to-noise ratio for ECoG data is better than for EEG because the

impact from scalp muscle activity is reduced. Furthermore, according to the same

research, an advantage of ECoG is provided by the fact that electrodes are closer to

one another compared to EEG, which further increases the spatial resolution.

The ECoG electrodes used in this study consist of conductive metal slides that are

embedded in a sheet made from silicon [35]. In order to be implanted, these electrodes

require a craniotomy, which is the surgical removal of a bone segment from the skull

in order to provide direct access to the brain. This procedure comes with several

risks, including infection and leakage of cerebrospinal fluids, since the electrodes are

connected to outside devices by wires [70].

The ECoG signals were recorded from 100-200 electrodes per patient at a sampling

rate of 512 Hz. Furthermore, high-γ activity has a low voltage, which means that the

data was recorded in Micro-Volts. While other types of sensors like EEG require an

additional electrode for calibration to be placed on the scalp or on the ear, ECoG does

not usually rely on this technique [35]. This is because a reference electrode might

need to be placed in an area with relatively constant activity, which would require

an additional craniotomy. Furthermore, according to Crone et al., techniques like

common average referencing (CAR) are often employed to reduce the bias associated

with any potential noise in the data.

Audio Recordings

Microphones were also placed in the subjects’ rooms for the purpose of studying the

relation between high-γ activity and speech. The microphones recorded the patients

during the same 24/7 period as the electrodes. This aspect of our project goes beyond

what previous research has achieved in this area because of the large data sample.

Furthermore, the patients’ free speech was recorded rather than specific word sets

like MOCHA-Timit [27].

18

3.2 Preprocessing

After collection, the ECoG signals were preprocessed by the Hasson Lab team in

the Princeton Neuroscience Institute [72]. The preprocessing process includes several

steps. First, the data undergoes despiking, which aims to reduce the number of spikes

caused by seizures or other artifacts. While ECoG signals have a higher spatial res-

olution than other types of sensors, it is still possible that there is interference from

muscle-related electrical potentials, vibrations, or pathophysiological factors [35]. For

example, one of the drawbacks of using ECoG data from epilepsy patients is that the

physiology of their brains can be affected by epilepsy or the brain lesions responsible

for epilepsy [35]. This means that some patients might suffer from serious enough

cases that the signals from their brains cannot be used for analysis. According to

Crone et al., it is common that some patients are excluded from some studies be-

cause of the poor data. One of the major drawbacks of our study is that we do not

have information on the position of electrodes or the pathophysiological state of the

patients.

In order to reduce the potential noise associated with the data, we remove data

points that are in the long tail in terms of outsized amplitudes, namely 4 × IQR

(inter-quartile range). This reduces the magnitude of spikes and provides a more

reliable although less complex signal.

After despiking, the data undergoes detrending, which removes a change in the

mean of the data over time, thus removing any remaining distortions. Detrending

relies on common averaging referencing (CAR), a technique that reduces noise in the

data by up to 30%, which yields more discernible neural signals [73, 35]. According

to Ludwig et al., CAR works by ”taking the sample by sample average of all good

recording sites” to create one reference for all sites. This is subsequently subtracted

from each signal. Recording sites (electrodes in our case) are judged to be appropriate

19

when their root-mean squared error (RMSE) is between 0.3 and 2 times the average

RMSE across all other sites.

The next step in the preprocessing of the ECoG signal data is extracting the

70 − 200Hz frequency range from the signal, which previous literature showed to

contain semantic-related data for human speech [65, 66, 67, 68, 69]. This technique

extracts broadband from a time series in a number of distinct sub-bands and then

averages across normalized sub-bands to provide an estimate of broadband shifts in

power.

Last but not least, the ends of the signals are trimmed and aligned with the au-

dio recordings of the patients using cross-correlation. Periods of silence are trimmed

out completely, which means we are left with data files for each conversation. Each

conversation is then smoothed using a Hamming window function [74, 75]. The pro-

cess of trimming the signal introduces artifacts into the waveform, more particularly

the sudden onset and offset of the signal [75]. Thus, the Hamming window function

shrinks the size of the signal at the edges, which reduces the artifacts inherent to

trimming.

3.3 Data Normalization and Binning

Normalization

In order to prepare the preprocessed data for the statistical and neural network mod-

els we used in this work, we first normalized and downsampled it. Because we have

m electrodes per patient that can be considered their own separate time series, we

performed the following steps on each electrode independently. The first step in the

normalization process is calculating the mean and standard deviation of the pre-

processed ECoG amplitudes across the individual training, validation, and test sets

(to ensure no information leakage from the test set to the process of hyper-parameter

20

optimization and training). Then, we subtract the respective mean for each set and di-

vide by the appropriate standard deviation in order to center the data [60, 76, 77, 78].

More precisely, we normalize the preprocessed value v in every ith electrode using:

vk,i =
vk,i − µi,s

σi,s

, ∀i ∈ {0,m}, ∀k ∈ {0, n}, ∀s ∈ {train, validation, test} (3.1)

where vi,k is the value of the preprocessed amplitude at each time step, and µi,s

and σi,s are the mean and standard deviation, respectively, of electrode i in set s.

Centering the data achieves a mean of 0 and a standard deviation of 1. While not

typically required, raw or skewed data can prevent model convergence. Normaliza-

tion increases the performance of the back-propagation algorithm inherent to neural

networks, speeding up training and convergence [76].

Binning

After the normalization process, we downsampled the data from 512 Hz to 20 Hz

through binning. Binning refers to averaging every n points in the original signal to

create a new point. In our work, we chose to average 25 points, which is roughly

equivalent to 50 ms of signal. Binning smoothes the signal by reducing the influence

of errors in ECoG array recordings and any outliers that may results from seizures

or artifacts in the signal. Furthermore, signal downsampling has also been employed

in the past in order to improve the performance of neural-network based models like

LSTMs and TCNs, which try to infer a temporal structure from the data [25]. We

perform binning on each electrode i using:

Bj,i =

!t+25
t vt,i
25

, j ∈ {0, 1, ..., ⌊n/25⌋}, t = j × 25. (3.2)

21

where Bj,i is the resulting binned data point at index j for electrode i. This results

in a downsampled time series of length ⌊n/25⌋.

Splitting into Train, Validation, and Test Sets

Splitting the data into separate sets for training, validation, and testing is a common

procedure in machine learning and data science [60, 76, 79, 78]. The training set is fed

to the models for training, while the validation and test sets are used for evaluating

prediction accuracy with various metrics. Normally, the training and validation sets

are used for hyper-parameter optimization, which is the process of tuning the model

and the data in order to get better results. Because of this recursive process, infor-

mation from the validation set can leak, leading to overfitting and loss of generality

for the model. A model that is not general also loses its usefulness, especially in

more practical applications. As a result of this, test data is reserved for an objective

evaluation at the end, which is performed by the machine learning practitioner in

order to get an objective assessment of how the trained models perform.

Our raw data is separated in different files. A conversation can be spread over one

or more files. Furthermore, each file contains n × m rows and columns, where each

row represents a binned time step and each column represents an electrode. Thus, we

calculated the number of rows per file in order to determine the distribution of our

data across files. Next, we loaded the file paths into a list and shuffled the list. Using

the number of rows per file, we then split the initial list into two: a training list and

validation list that contains 80% of the data and a test list that contains 20% of the

data. This split ratio is common in machine learning, but given the large amount of

data available we could have also reduced the quantity of data in the test set [60, 79].

After this step, we did another 80/20 train/validation split on the first list in order to

generate a training list and a validation list. Shuffling the file list ensures that each

set contains data from multiple conversations, and data from a single conversation

22

can be separated in up to three sets. This increases the representativeness of each

set, allowing us to interpret the results more easily. We note that once the train,

validation, and test sets were generated, the file path lists were saved to separate files

so that we could run different models across the same split.

23

Chapter 4

Methods and Results

This chapter outlines the methods used to explore the hypothesis that ECoG signals

can be forecasted. In order to test this hypothesis we employ the universal machine

learning workflow described by Chollet [60]. Section 4.1 presents a rigorous definition

of our hypothesis and problem, including measures of success. Section 4.2 expands our

approach to using ECoG data to test this hypothesis. Section 4.3 showcases different

models and methods we employed in order to test our hypothesis, while Section 4.4

highlights the most representative results for each method. Last but not least, we

discuss limitations associated with our study in Section 4.5.

4.1 Problem Definition

Time series forecasting is an important problem in machine learning that has appli-

cations in areas beyond neuroscience, such as economics, web traffic prediction, and

speech generation [60, 80, 77, 78]. In our work, we focus on the task of forecasting the

next ℓ steps of an m-dimensional time series Y that results from ECoG monitoring.

In our case, m represents the number of electrodes per patient and can range between

100 and 200.

24

4.1.1 Time Series Modeling

There are multiple ways to approach m-dimensional time series forecasting. The most

common way is handling each individual dimension as a specific task, which results

in m univariate time series of length n that correspond to each of the dimensions.

According to Mariet and Kuznetsov, univariate time series can be modeled easily by

auto-regressive models [81] and neural network models like Recursive Neural Networks

(RNNs) [60, 78]. Nonetheless, multiple time series might also be correlated between

themselves: in our case, it is possible that multiple electrodes may pick different

aspects of the same brain activation in relation to a specific task. Multivariate models

have been developed in order to capture the relationships between multiple time series.

These include Vector Autoregressive (VAR) models as well as neural network models

like RNNs [82, 60].

Both univariate and multivariate time series methods treat a sample at time t as

a singular step, attempting to capture relations between data samples at times t and

t+1. According to Mariet and Kuznetsov, these types of models are referred to as local

models since they capture information about samples that are close in time. Another

interpretation of m-dimensional data is referred to as sequence-to-sequence modeling,

which considers each of of the m univariate time series as a separate sample drawn

from an unknown distribution [80]. Rather than modeling the relationship between

time t and t + 1, the series learns to map time series of length n− ℓ to sequences of

length ℓ. Popular sequence-sequence models include LSTMs, RNNs, WaveNet, and

TCN [33, 32, 80, 60].

We use the notation devised by Mariet and Kuznetsov to formalize local and

sequence-to-sequence modeling in the context of ECoG arrays. 1 In both cases, we

look at a multi-dimensional time series Y m×n (m electrodes recorded for n discrete

1The notation used in this section makes extensive use of the notation presented by Mariet and
Kuznetsov [80], whose work provides an overview of sequence-to-sequence modeling for time series.

25

time steps). Because the sampling of the electrode recordings is set at 512 Hz, this

means that Y has n
512

seconds of signal. We denote the value of all m time series in

Y at time t with Yt(·) and the value of the i-th dimension with Yt(i). Similarly, Y b
a (·)

refers to the sequence of time steps between a and b: Ya(·), Ya+1(·), ..., Yb(·).

Local Modeling

In our work, the goal of the predictive model is to infer the amplitude of the ECoG

recordings at times Y n+ℓ
n+1 (·) where ℓ ≥ 1 using Y at previous times. In the case of

local modeling each time series in m is split into a training set Zi = {Zi,1, Zi,2, ..., Zi,n}

where:

Zi,t = (Y t
t−p(i), Y

t+ℓ
t+1 (i)), (4.1)

where: p ∈ N, ℓ ≥ 1, i ∈ {1, ...,m}, t ∈ {1, ..., n}. (4.2)

In 4.1 p is equal to the lookback for each input, while k is the length of the predicted

sequence. In univariate settings, we attempt to learn a different hypothesis hi for each

Zi. The goal of the model is to learn a hypothesis function hi : Y
1×p → Y 1×k from a

hypothesis set H for each electrode in m while achieving a small generalization error

[80]. Again, using the notation used by Mariet and Kuznetsov, we can define this

process rigorously as:

λ(hloc|Y) =
1

m

m"

i=1

ED[L(hi(Y
n
n−p(i)), Y

n+ℓ
n+1 (i))|Y], p ∈ N, ℓ ≥ 1. (4.3)

In 4.3 we define hloc := (h1, ..., hm) and we try to minimze the generalization error

λ over m electrodes, where E is the expected value of L conditioned on Y , our time

series. L is a loss function that we use to evaluate learning success (we discuss loss

26

functions in more depth in Section 4.3) and D represents the distribution of our target

samples Y n+l
n+1 given Y [60, 80].

In simpler terms, we attempt to find a collection of hypotheses hloc that can model

each individual time series independently, minimizing the generalization error. To

evaluate our hypotheses, we use a loss function that allows us to measure our success.

Ultimately, this would result in m models, one for each electrode per patient.

Multivariate local learning works similarly. The only difference is that our training

set is Z = {Z1, ..., Zn}, where:

Zt = (Y t
t−p(·), Y t+ℓ

t+1 (·)), (4.4)

where: p ∈ N, ℓ ≥ 1, t ∈ {1, n}. (4.5)

In this case, we aim to find a single hypothesis that maps r electrode time series

(2 ≤ r ≤ m) of length p to w electrode time series (2 ≤ w ≤ m) of length ℓ.

Sequence-to-sequence Modeling

Sequence-to-sequence modeling is similar to multivariate local modeling. Instead of

attempting to find one hypothesis Y p×m → Y l×m we attempt to find one that maps

Y (n−ℓ)×m to Y l×m, where n represent all binned time steps in the data. We find h

that achieves the lowest generalization error through:

λ(h|Y) =
1

m

m"

i=1

ED[L(hi(Y
n−ℓ
0 (i)), Y n+ℓ

n−ℓ (i))|Y], p ∈ N, ℓ ≥ 1. (4.6)

In this case, the name sequence-to-sequence comes from the fact that all past values

are mapped to future values, not just the ones closest to the prediction, as is the case

with local modeling [80].Local and sequence-to-sequence models are important to our

27

study because they are intrinsically related to the task of time series forecasting.

In our work we use both in order to determine whether ECoG recordings can be

forecasted.

The approach used in this work combines elements from local and sequence-to-

sequence modeling. For example, we use a local approach when training models

for the one-to-one scenario, but we default to a hybrid approach similar to the one

described by Zhu and Laptev and Mariet and Kuznetsov with regard to many-to-one

models. In this approach, we split the sequences across the temporal axis in order to

get inputs of length p that we use to train a single hypothesis to predict one electrode.

4.1.2 Evaluation Metrics

We evaluate our hypothesis that ECoG signals can be forecasted using two primary

metrics. The first one is calculating the mean absolute error (MAE) between the

target signal y and the predicted signal ŷ. The MAE is computed as follows for y and

ŷ of length ℓ:

MAE =

!n
i=1 |yi − ŷi|

n
, i ∈ {1, ..., ℓ}. (4.7)

An alternative to MAE is the Root Mean Squared Error (RMSE). Both are used

extensively in time series forecasting [60, 84]. The RMSE is calculated as follows:

RMSE =

#!n
i=1(yi − ŷi)2

n
, i ∈ {1, ..., ℓ}. (4.8)

In our study, we chose to use the MAE for both the evaluation metric and the loss

function because it is less sensitive to outliers [84, 85]. Since the ECoG data contains

a lot of outliers, it is possible that it would be harder for the models to learn if we were

28

to use RMSE. However, there are several tradeoffs inherent to using MAE as opposed

to MSE. For instance, according to Chai and Draxler, calculating the gradient of

a MAE score with respect to certain model parameters can be difficult as a result

of MAE’s reliance on the absolute value. RMSE’s ability to capture outliers may

also be an advantage as it might be able to help the model learn specific amplitudes

more easily than the MAE. Nevertheless, since we are not able to exclude outlier

data points easily in our binned data we chose to use MAE as a loss function and

evaluation metric for this study.

Another metric used in this study to evaluate the quality of the predictions is

Pearson’s r Correlation Coefficient [86]. We use Pearson’s r as a measure of linear

association between the target and predicted series. According to Lee Rodgers and

Nicewander, there are multiple ways to conceptualize Pearson’s r. The most relevant

ones to our project are: correlation as a raw function of scores and means, correlation

as a standardizes slope of the regression line, and correlation as the geometric mean

of the two regression slopes [86]. Thus, we use correlation to determine how close

the predicted signal is to the forecasted signal, whether it follows the same trends,

and whether the regression slopes match. Pearson’s r outputs values between −1 and

1, where 0 means that the two series tested are not correlated, −1 means that the

series have a perfect negative correlation, and 1 that the series have a perfect positive

correlation.

We use the SciKit implementation of Pearson’s r [87]. This implementation cal-

culates the correlation coefficient between the predicted time series ŷ and the target

time series y using:

r =

!
(y − µy)(ŷ − µŷ)$!

(y − µy)2
!

(ŷ − µŷ)2
(4.9)

29

where µy and µŷ are the means of y and ŷ, respectively.

In our study we rely on Pearson’s r after training on longer sequences generated

sequentially by our models. This is because we found Pearson’s r to be unstable with

small sample sizes. For instance, Figure 4.1 highlights how Pearson’s r is distributed

around 0 for a batch of shorter sequences, which indicates that most samples don’t

correlate. Meanwhile, the graph generated in Figure 4.2 has correlation 0.484 and

MAE 0.580, despite being generated by the same exact model.

Figure 4.1: Kernel Density Estimate of Pearson’s r correlation coefficients for an
LSTM Encoder-Decoder model’s validation batch. Each correlation was computed
on the validation target and predicted series of length 20 (binned ECoG signal). The
input batch to the LSTM model has shape (1024, 100, 1), which corresponds to 1024
samples of length 100 (∼ 5, 000 ms) of 1 electrode. The x-axis represents the range
of the r value between −1 and 1, while the y-axis represents the probability density.

As a result of this trend, we evaluate each model after training by calculating the

MAE and correlation after predicting 50s from random conversations selected from

the validation and test sets, respectively. For one-to-one settings we take a sequence

of length n = 1100 and we predict sequential time series of length ℓ = 20. For each

window of size 20 predicted by the model, we use the previous 100 time steps. At the

end, we discard the initial 100 time steps and calculate the MAE and correlation for

the resulting two sequences of size 1000 (1000 * 50ms = 50,000ms = 5 seconds). The

process is illustrated in Figure 4.3.

30

Figure 4.2: LSTM Encoder-Decoder Model-generated graph of predictions vs. targets.
Pearson’s is r = 0.484 and MAE = 0.580. This figure shows the results after predicting
a sequence over longer (50s) periods of time. The x-axis represents the binned time
steps and the y-axis represents the amplitude of the preprocessed, normalized, and
binned signal.

Figure 4.3: This diagram shows how sequences of duration 50s are generated. Each
input has length 100 and each target has length 20. We use the model to predict 20
time steps at a time, after which we move the input window forward.

4.2 Data Generator

After preprocessing, normalization, and binning, the next step in the prediction

pipeline is feeding data to the predictive models. The brain signal recordings for

one patient can consume up to 60GB in disk space. As a result, there can be is-

sues related to loading them into the RAM of a regular computer cluster node and

31

how Numpy arrays are stored. This is problematic because neural networks work by

processing batches of samples that update their internal states. To overcome this

obstacle, we designed and implemented a Keras Generator class that yields batches

of data that can fit into memory [60, 88]. The generator enables batch training us-

ing the Keras deep learning library while reducing the number of file open and close

operations.

4.2.1 Data Batches and Samples

Training data is fed to a neural network model for the purpose of learning [60, 78, 77].

The data is fed forward and backward through the neural network in a process called

backpropagation in order to update the internal states and weights and to minimize

the output of the loss function, which is a measure of error between the target y and

predicted values ŷ. Because the backpropagation algorithm relies on a set of highly

parallelizable computations, it is desirable to increase the amount of data fed to the

neural net at once. As a result, we rely on batches, which contain an arbitrary number

of samples.

A sample refers to a row of data and usually contains an input and output, which

is commonly called a target. The model compares the target to the output in order

to calculate the error and evaluate its learning progress with the help of the loss

function. Samples are also called sequences in time series forecasting [80].

A batch consists of several samples. The batch size can have an impact on the

performance of the model during training and evaluation [60, 77, 78]. A larger batch

size is preferable because it speeds up training when high-performance GPUs are

available [60]. In our case, we used batches that contain between 512 and 2048 sam-

ples, which allowed us to use high-end Nvidia Tesla P100 GPU-enabled clusters made

available by the Princeton Research Computing consortium. Section 4.3 includes

more information on the relationship between batches, neural networks, and training.

32

The generator yields batches of sequence data based on the total number of time

steps in the dataset. Thus, a batch always contains an input with the shape:

X = (batch size, ⌊ lookback

sample period
⌋, electrode count) (4.10)

and a target with the shape:

y = (batch size, ⌊ target length
sample period

⌋, target electrode count) (4.11)

The sample has length lookback (referred to as p in Section 4.1), which is the

number of time steps we use in order to make a prediction. Similarly, the target is

characterized by a delay and a target length (referred to as ℓ in Section 4.1). The

delay refers to the number of time steps between the sample and the target data (i.e.

how far in the future are we predicting) while the target length refers to the length

in time steps of the target data. The sample period allows the generator to yield

downsampled data by omitting certain time steps. For example, if sample period = 2,

every other time step in the given data will be omitted, and a second of signal will

contain 512/2 = 256 time steps instead. This is useful for comparing different model

pipelines in order to better understand what accounts for the performance of the

model, similar to the work done by Anumanchipalli et al. and Makin et al..

4.2.2 Data Sampling

The generator needs to extract batches of samples from files. In this regard, the

generator functions similar to a dictionary, mapping batch indices to data samples

and targets. When the generator is initialized, it calculates the total number of

batches using the total sample count and the batch size. The batch size refers to

33

the number of samples in a batch, usually between 512 and 2048. To calculate the

total sample count, the generator needs to iterate over all data files and get the total

number of rows. Since loading each individual file in memory would constitute an

additional overhead, the generator uses the much faster Numpy mmap (memory map)

mode, which allows the generator to load the shape of the array rather than the con-

tents of the entire file [89]. For each file, the generator reads n = file timestep count,

which is the number of rows that correspond to the total number of time steps for a

brain signal recording. We then calculate the file sample count as follows:

file sample count =
file timestep count

(lookback + delay + target length)
(4.12)

This prevents us from drawing overlapping samples in the dataset, which increases

the entropy of the data, allowing the neural network to minimize overfitting during

learning [60]. file sample count is then used to compute the total sample count,

but it is also added to a Python dictionary object file map that maps files to their

sample counts.

Naive Implementation

A naive implementation would yield batches of data using a global array of indices of

length total sample count for each sample sample indices = [0, 1, 2, ..., total sample count).

For each batch, we would then find samples by generating an interval of indices

batch indices = [batch index × batch size, (batch index + 1) × batch size. Then,

we use the file map we created above in order to fill the batch with samples and

targets. For each index in batch indices we will open the file associated with it in

file map. Unfortunately, while this method is simple and easy-to-understand, it

adds an unacceptable layer of overhead during training because a worst-case scenario

34

is that a file that contains n batches is opened n times for one batch. For a generator

with batch size = 256, lookback = 128, delay = 0, target length = 1, we saw batch

retrieval rates as high as 500 seconds.

Batch-File Map Implementation

In order to improve the efficiency of the generator class, we improved the naive im-

plementation by creating an additional batch file map that maps files to samples

based on each file’s file sample count. This is implemented as a Python nested dic-

tionary that reduces the number of file open operations by preemptively assembling

batches out of samples. Thus, the keys in the batch file map refer to batch indices

(batch index), while the values store Python dictionaries that map files to sample

indices in the respective files. In the nested dictionaries, files are mapped to the start

and beginning of a series of time steps. This interval contains the samples associated

between a batch and a file. This is useful when a file contains enough time steps to be

included in multiple batches. The structure of batch file map is illustrated in Figure

4.4.

Figure 4.4: Diagram that outlines the mapping between batches, files, and samples.
The batch file map maps batch indices to nested dictionaries. The nested dictio-
naries are responsible for mapping files to the specific interval of time steps that is
present in the respective batch. The intervals are stored in Python tuple types.

35

This implementation reduces the number of file open and close operations by

enabling the generator to read all the samples that a file has for a specific batch at

the same time. Generating the map is also not time intensive as we can rely on the

Numpy memory-map mode, which enables quick access to the row count of each file

[89]. While a batch created using the naive implementation might take up to 500

seconds to be generated, a batch created using the batch-file map implementation

can be generated in as little as 1.14 seconds.

4.3 Models and Experiments

We use the binned data in order to determine whether signals recorded from ECoG

arrays during conversations can be forecast. In order to do so, we employ both one-to-

one and many-to-one models. One-to-one models can be considered univariate time

series prediction tasks and can be solved with both local and sequence-to-sequence

modeling techniques. Many-to-one models represent a special case of the multivariate

time series problem described above where we search for a hypothesis function h that

maps Y p×m → Y ℓ×1, where Y ℓ×1 represents the target sequence of length ℓ for one

electrode. Since brain activations are complex in nature and result from interactions

between different areas of the brain, we also hypothesize that using multiple electrodes

to predict the output of one electrode will increase the accuracy of our predictions.

In order to evaluate the task, we leverage multiple types of models and observe the

MAE and Pearson r correlation coefficient on two sequences of length 1000 from the

validation and test set, respectively. The sequences are roughly equal to 50 seconds.

As Section 4.1.2 showed, using longer sequences stabilizes the correlation coefficient

and allows us to determine the performance of a model more reliably.

36

4.3.1 Prediction Task

First, we formalize the parameters of the task. The following models will at-

tempt to forecast the signals from one or multiple electrode samples in batches

of size batch size = 1024 with lookback = 100 bins (equivalent to 5 seconds)

and targetlength = 20 bins (equivalent to 1 second). We only compare results

from binned data, although we note that we have also attempted prediction on

normalized-only data, which is further discussed in Section 4.4. Because the data is

already downsampled through the process of binning, we set sample period = 1.

While some models (e.g. WaveNet) would benefit from a slightly larger batch size

when running on high-performance GPU clusters from a performance standpoint,

modifying the batch size can change the way in which the model learns. As a re-

sult, ensuring that batches have equal size across experiments is crucial to getting

comparable results across the board.

We also note that we only used data from one subject in this study. The subject

was chosen with help from the Hasson Lab team [72]. The subject has a relatively

high signal-to-noise when compared to other subjects, as determined by comparing the

resulting preprocessed data to the raw ECoG recordings. Furthermore, the patient

also has a lot of speech data associated with his ECoG recordings, over 38 hours.

This means that we can use 38 hours worth of speech recordings from the entire 24/7

period (because we trim out the silent periods) in order to test our hypothesis.

4.3.2 Electrode Selection

The subject we analyzed had 114 ECoG electrodes implanted. Because we performed

only one-to-one and many-to-one prediction, we needed to select one electrode we

could compare across data sets. In order to do so, we ran a baseline approach and

a linear regression model on each electrode in a one-to-one setting. The baseline

approach and linear regression models are outlined below. We selected the electrode

37

with index 5 in our data set because it had one of the lowest MAEs across all elec-

trodes when looking at the results from the two approaches. The top electrodes are

highlighted in tables 4.1 and 4.2.

Electrode
Index

Baseline MAE
Increasing

7 0.809
5 0.817
103 0.824
107 0.829
15 0.837

Table 4.1: Top 5 Electrodes by MAE (Baseline One-to-One Task). The MAE is
averaged per batch and is shown in increasing order.

Electrode
Index

Linar Regression MAE
Increasing

5 0.567
7 0.577
103 0.580
15 0.591
107 0.591

Table 4.2: Top 5 Electrodes by MAE (Linear Regression One-to-One Task). The
MAE is averaged per batch and is shown in increasing order.

4.3.3 Baseline Approach

Inspired by Chollet [60], we start with a basic, common-sense non-machine-learning

baseline that will serve as the baseline for both one-to-one andmany-to-one modeling.

Our initial goal is to beat this approach in order to show that ECoG signals can be

forecast using machine-learning and statistical approaches.

In our case, a common-sense approach is to assume that the brain signal time

series is continuous and that the signal at times t and t + ℓ are likely to be similar.

From a neuroscience perspective, this approach makes sense because ECoG brain

signal recordings have been shown to be consistent across time [70]. Thus, when

38

predicting 20 binned time steps using lookback = 100, we simply shift the last 20

steps from the input forward and replicate them. A predicted sample can where this

approach is successful can be seen in Figure 4.5.

Figure 4.5: Predicted vs. Target Series for a baseline one-to-one task, 5 seconds input
and 1 second target. MAE was calculated at 0.371 and the Pearson r correlation
coefficient at 0.518.

Figure 4.6: Predicted vs. Target Series for a baseline one-to-one task with poor
performance, 5 seconds input and 1 second target. MAE was calculated at 5.122 and
the Pearson r correlation coefficient at 0.045.

39

Similarly, we can also see an example where shifting the values of the amplitudes

does not work as well. This is replicated in Figure 4.6. To compensate for the high

variance in MAE and correlation across short samples, we evaluate the model on ran-

dom 50s conversations from the validation and test sets, as described in Section 4.1.2.

Figures 4.7 and 4.8 show the performance of the baseline on those sets. We notice

that the test and validation sequences see similar MAEs and correlation coefficients,

which is expected given the nature of the baseline approach.

Figure 4.7: Predicted vs. target series for baseline one-to-one task on 50s random
sample from the validation set. MAE= 0.871 and r = 0.005.

4.3.4 Linear Regression

In addition to a common-sense, non-machine-learning baseline we also evaluate the

prediction task with a simple model that does not rely on neural networks. In our case,

we rely on Linear Regression, which is a de facto standard for time series forecasting

[79]. We use linear regression for a one-to-one task in order to establish a baseline

for prediction and we rely on the SciKit implementation [90]. Results for random

conversation segments 50s from the validation and test sets can be seen in Figure 4.9

and Figure 4.10, respectively.

40

Figure 4.8: Predicted vs. target series for baseline one-to-one task on 50s random
sample from the test set. MAE= 0.825 and r = −0.014.

Figure 4.9: Predicted vs. target series for baseline one-to-one task on 50s random
sample from the validation set. MAE= 0.577 and r = 0.479.

The MAE and correlation coefficients don’t change too much between validation

and test sets, which shows that the model has been able to generalize learning well.

Nonetheless, note that the model is unable to properly predict the true extent of the

amplitudes but is able to follow the trend of the graph relatively well.

41

Figure 4.10: Predicted vs. target series for baseline one-to-one task on 50s random
sample from the test set. MAE= 0.598 and r = 0.469.

4.3.5 Neural Networks

The first step in evaluating a neural network approach is using a simple neural net-

work. A neural network differs from traditional machine learning approaches like

Linear Regression because it relies on artificial neurons grouped into layers. While

a technique like Linear Regression attempts to find a linear relationship between the

output and the input based on different coefficients, a neural network can model both

linear and nonlinear relationships, which in theory should be better for our task of

forecasting ECoG signals [77, 60].

The basic building block of today’s neural networks is an artificial neuron that

can perform simple tensor-based operations. A tensor is simply an n-dimensional

vector. According to Nielsen [77], the idea for an artificial neuron comes from Frank

Rosenblatt, who developed the perceptron, a prototype for the neurons used in neural

networks today [91]. Figure 4.11 displays the basic idea behind an artificial neuron.

The artificial neuron is simply a representation for an activation function that is

applied to the sum between the dot product between the input tensors and the weights

of the neuron and the bias, which is used to adjust the dot product (Equation 4.13).

42

Common activation functions include the sigmoid function and the Rectified Linear

Unit (ReLU) because of their nonlinear nature [77, 60, 78].

Figure 4.11: Artificial Neuron. Reproduced from Neural Networks and Deep Learning
by Nielsen [77].

output = activation((W × input) + bias) (4.13)

Equation 4.13 highlights the mathematical definition of an artificial neuron, where

W represents the weights of the neuron. The activation function can be conceptual-

ized as determining when the neuron will ”fire” in response to an input, mapping the

neuron’s inputs to values in a specific interval. Because we use nonlinear activation

functions, that means that multiple layers of neurons can be stacked in order to model

nonlinear functions as well [77]. According to Nielsen, this results in networks that

can approximate any function.

In order to learn how to approximate the function that outputs the given tar-

gets based on the given input, a neural network relies on a simple algorithm called

stochastic gradient descent (SGD) [60]. SGD allows the network to learn the approx-

imation of the function by ”computing the gradient of the loss function with regard

to the network’s parameters,” which is also considered a backward pass [60]. The

parameters of the neural network are then moved in opposite direction from the gra-

dient, which reduces the value of the loss on the batch. SGD is further enhanced by

the Backpropagation algorithm which allows the neural network to minimize the loss

function across multiple layers [77, 60]. According to Chollet, most machine learning

43

practitioners use variants of SGD. Since SGD and its variants control how learning

proceeds in a neural network, we refer to the function that performs gradient descent

as the optimizer of the model.

As mentioned in section 4.2.1, the loss function measures the error between the

predicted values ŷ and the true target values y. The goal of the neural network

is to minimize the loss function during training. In our study we use the MAE as

a loss function, which is common for time series forecasting applications [60, 84].

Additionally, we use Adam as the optimizer because it is a good fit for models that

rely on a lot of data and has been used in previous studies on brain signal modeling

[60, 25].

To conclude, we can think of neural network models as a network of layers or a

directed, acyclic graph of different layers [60]. The network contains an input layer, a

set of hidden layers, and an output layer. The input layer is responsible for encoding

the input tensors, while the hidden layers are neither inputs nor outputs and are

used to create complex representations of the function that the network is trying to

learn. The output layer decodes the states of the neural network into a format that’s

appropriate for the problem and the target tensors. Figure 4.12 outlines a generic

neural network model with two hidden layers.

Figure 4.12: Neural Network Architecture with Two Hidden Layers. Reproduced
from Neural Networks and Deep Learning by Nielsen [77].

44

One-to-one Experiment

We first outline the one-to-one baseline neural network experiment. We use a simple

neural network implemented with the Keras deep learning library in order to predict

20 binned steps using a history of length 100 for the electrode with index 5 [92]. The

network has a simple Dense layer consisting of 256 hidden units and uses the Adam

optimizer together with MAE as the loss function [93]. The Dense layer consists of

256 neurons that use no activation function, which was recommended by Chollet for

regression tasks that try to predict an arbitrary value [60]. In addition to the Dense

layer, the model also employs a Flatten layer that transforms all the outputs from the

Dense layer into a single-column tensor that contains all the learned weights. This

layer is fed to another Dense layer that has 20 hidden units (one for each time step

output). The goal of the last Dense layer is to learn how to interpret the weights from

the Flatten layer before it. The output of the Dense layer represents the prediction

of the neural network given the input provided.

The neural network is trained on batches of size 1024 for 100 epochs. If we have

n rows of data in total, an epoch is the process of feeding n/1024 batches to a neural

network, where n/1024 is the number of iterations. Training for a longer period of

times allows the neural network to learn more complex relations within the data.

After training the network, we can evaluate the training and validation loss. This

allows us to track whether the model has been overfitting. When the training loss

becomes higher than the validation loss, we can say that the model has started over-

fitting on the training data. The training vs. validation loss for the one-to-one model

described above can be seen in Figure 4.13.

We notice that the model is able to quickly learn how to interpret the data, since

the difference between the initial and final validation loss is very small. Further-

more, since the loss is relatively constant over 100 epochs, we can also determine

45

Figure 4.13: Training vs. Validation Loss for the Baseline One-to-one Neural Network
Model.

that the model has not started overfitting, which means that there is still room for

improvement.

In addition to the training and validation loss, we also plot the performance of the

model over random sequences of length 50 seconds from the validation and test sets.

Figures 4.14 and 4.15 showcase the performance of the model on these evaluation

metrics.

Figure 4.14: Predicted vs. target series for a baseline one-to-one task on a 50s random
sample from the validation set. MAE= 0.602 and r = 0.385.

46

Figure 4.15: Predicted vs. target series for a baseline one-to-one task on a 50s random
sample from the test set. MAE= 0.734 and r = 0.047.

Both the validation and the test MAE are worse than Linear Regression. Further-

more, we also notice that the correlation on the test set is close to 0, which means

that the model was not able to generalize well. This can indicate that the network is

not complex enough to infer structure from the data or that the model does not fit

the task well.

Many-to-one Experiment

In order to further understand the performance of this model, we also attempt many-

to-one prediction using the same architecture. The only difference between the previ-

ous model and this one is that we modify the initial dense layer to accept inputs that

have more electrodes. For this task, we tried to predict the output of the electrode

with index 5 using all 114 electrodes available to us. Thus, the shape of the input

batch is (1024, 100, 114) and the shape of the output batch is (1024, 20, 1), which

means we attempt to map the histories of 114 electrode to the output of one. The

results of this experiment are shown in figures 4.16 and 4.17.

Unfortunately, the MAE and correlation look worse. However, we notice that the

amplitudes of the signal seem to look closer to what we would expect from the ECoG

47

Figure 4.16: Predicted vs. target series for a baseline many-to-one task on a 50s
random sample from the validation set. MAE= 0.854 and r = 0.193.

Figure 4.17: Predicted vs. target series for a baseline many-to-one task on a 50s
random sample from the test set. MAE= 1.010 and r = −0.060.

signals, unlike previous models that reverted to the middle of the input sequence. This

suggests that the model is not complex enough to capture the complicated structure

of the ECoG data. This is consistent with the research done by Sutskever et al., who

found that regular deep learning networks are not a great fit for sequence-to-sequence

mapping [61].

48

4.3.6 Encoder-Decoder Framework

In order to further test our hypothesis that ECoG data can be forecast, we also

employ a sequence-to-sequence encoder-decoder model that utilizes Long Short Term

Memory (LSTM) layers. This model is a better fit for this task and has been inspired

by the work done by Sutskever et al. and Cho et al..

An encoder-model architecture uses two recursive layers in order to map input

sequences of variable length to output sequences of variable length. The first layer is

called the encoder and the second layer is called the decoder. This architecture was

first proposed in 2014 [61, 94]. In our case, we use an encoder-decoder model with

teacher forcing during training. This means that during training we feed the encoder

an input sequence (in our case the history of the ECoG data), which then processes

it. Instead of using the output of the first layer, we throw it away and simply copy the

internal states of the encoder to the second layer, the decoder. Teacher forcing means

that the decoder is fed parts of the target data during training and forced to generate

the next step in the sequence. In our case, the decoder is fed target data that’s

shifted backwards by 1 binned time step, which forces it to learn how to infer the

structure in the signal. During inference, the encoder-decoder model has to generate

output sequences from scratch, using only its previously generated sequences [84].

Our encoder-decoder implementation was inspired by Chollet [95] and Eddy [96].

Encoder-decoder models rely on Recursive Neural Network (RNN) layers. In this

case, we use a specific type of RNN called LSTM [32]. Like RNNs, LSTMs are able to

develop a memory of past actions with the help of an internal state. However, while

RNNs struggle to learn long-term dependencies, LSTMs solve this problem, which is

why we use them in our architecture [60].

We trained an LSTM-based encoder-decoder model on our data in order to better

understand whether a sequence-to-sequence architecture is better at forecasting the

future of an ECoG signal than a baseline neural network. We find that this is the case

49

on the validation set, but not on the test set. Figure 4.18 and figure 4.19 highlight

the results. It is possible that the teacher forcing aspect of our training was not as

useful as it is on character-based machine translation, which is the first problem it

was developed on. This may be because our network is only able to predict the last

time step right, rather than an entire sequence.

Figure 4.18: Predicted vs. target series for a LSTM encoder-decoder in a one-to-one
task on a 50s random sample from the validation set. MAE= 0.599 and r = 0.507.

Figure 4.19: Predicted vs. target series for a LSTM encoder-decoder in a one-to-one
task on a 50s random sample from the test set. MAE= 0.742 and r = 0.158.

50

4.3.7 Temporal Convolutional Network

In addition to LSTM, we also attempted to use a Temporal Convolutional Network

(TCN) to forecast ECoG signals. TCNs were first proposed by Bai et al. as a response

to the popularity of recursive-only approaches for sequence-to-sequence modeling.

A TCN differs from previous models because it relies on convolutions rather than

recursive connections. In the context of a TCN for sequence-to-sequence mapping, a

convolutional layer runs a one dimensional filter (also called a kernel) over the input

sequence in order to learn local patterns, while the architectures discussed above

were limited to learning global patterns on the input data. One key aspect of TCNs

is that they use causal convolutions rather than regular convolutions (the kernel is

only applied to time steps before the current one). According to Bai et al., this

prevents leakage from the future to the past.

While convolutional networks were initially developed for tasks related to com-

puter vision, Bai et al. were able to create a lightweight model that can map input

sequences to output sequences. However, a problem with classical convolutions is

that they struggle to learn historical data. The authors were able to overcome this

issue by relying on dilated convolutions and residual connections. Dilated convolu-

tions enable the network to make connections across different combinations of past

data (i.e. a regular one-dimensional convolution sees sequential windows of size k,

while a dilated convolution with d = 2 sees every other window). TCNs embed the

dilated convolutions in residual blocks. A residual block contains two dilated con-

volution layers whose outputs are processed, in sequence, by a weight normalization

layer, a ReLU activation layer, and a Dropout layer. Residual blocks also employ

residual connections that allow the network to learn by skipping residual blocks when

necessary [33].

The advantages of using TCNs compared to recursive neural networks are that

TCNs have a low memory requirement for training and avoid the problem of explod-

51

ing/vanishing gradients [33]. Furthermore, TCNs can be seen as a generic version

of WaveNet. This is an advantage because TCNs enable us to capture some of the

benefits of WaveNet in a lightweight implementation. In our study we used a TCN

implementation adapted from the work of Remy [97].2

We attempted both one-to-one and many-to-one predictions using the TCN ar-

chitecture described above. In order to do so, we set the number of filters used in

the convolutional layers to 32 and the kernel size to 4. In addition to this, we also

used the following dilations: {1, 2, 4, 8, 16}. The list of dilations is equivalent to per-

forming a convolution every window, every other window, every 4th window, and so

forth. This allows the model to learn the relationships between local patterns across

longer sequences. Last but not least, we used 2 stacks of residual blocks given the

complicated nature of the task.

One-to-one Experiment

Similar to previous experiments, we attempted to predict two 50 seconds long se-

quences from the validation and test sets. We forecast the electrode with index 5

using 100 binned time-steps to predict the next 20. The results are shown in figures

4.20 and 4.20.

The TCN results are promising on the validation set, performing just as well as

the LSTM Encoder-Decoder architecture. However, the results on the test set are

not as promising because the correlation drops to near 0 while the MAE is similar.

This indicates that the TCN network does not generalize well on this task.

2GitHub URL: https://github.com/philipperemy/keras-tcn

52

Figure 4.20: Predicted vs. target series for a TCN one-to-one task on a 50s random
sample from the validation set. MAE= 0.585 and r = 0.449.

Figure 4.21: Predicted vs. target series for a TCN one-to-one task on a 50s random
sample from the test set. MAE= 0.740 and r = 0.015.

Many-to-one Experiment

In addition to the one-to-one task, we also attempt a many-to-one prediction using

the same parameters. The only difference is that we use the histories of all 114

electrodes rather than just the history of electrode 5. The results are shown in figures

4.22 and 4.23.

The results from the many-to-one TCN experiment show that adding more in-

formation from multiple electrodes does not improve our ability to predict the data.

53

Figure 4.22: Predicted vs. target series for a TCN many-to-one task on a 50s random
sample from the validation set. MAE= 0.672 and r = 0.163.

Figure 4.23: Predicted vs. target series for a TCN many-to-one task on a 50s random
sample from the test set. MAE= 0.771 and r = 0.113.

Furthermore, it seems that the additional data has a negative effect, since the exper-

iment ran on the validation set does worse in terms of MAE than the test set.

4.3.8 WaveNet

The last model used in this study is WaveNet. WaveNet was developed by Google

DeepMind to generate raw audio waveforms [34]. This model is more advanced than

the TCN model discussed above because it includes skip connections across layers,

conditioning, context stacking, and gated activations [33]. However, it is still based

54

on the Convolutional Neural Network (CNN) architecture. WaveNet represents one

of the top models for generating raw audio from scratch, including music [34]. In this

study, we ran a slightly modified version of WaveForm as implemented by Eddy [96].3

Similar to previous models, we compared the one-to-one and many-to-one pre-

diction tasks. Similar to the TCN model, we initialized the WaveNet model with 32

filters of width 2. One difference between WaveNet and TCN is that we used more

dilations in this model: {1, 2, 4, 8, 16, 32, 64, 128}.

The task for the one-to-one experiment was the same as outlined above. The

results are shown in Figure 4.24 and 4.25. Similarly, results for the many-to-one

experiment are shown in Figure 4.26 and 4.8.

Figure 4.24: Predicted vs. target series for a WaveNet one-to-one task on a 50s
random sample from the validation set. MAE= 0.572 and r = 0.504.

The results produced by WaveNet are the most promising compared to our other

models. For one-to-one forecasting, WaveNet consistently outperforms the other

models when comparing the results for the validation set. However, the test set

paints a different picture. Like previous neural network models, WaveNet is not

able to generalize either and comes in last, although its correlation is slightly better

compared to the other neural network models.

3GitHub URL: https://github.com/JEddy92/TimeSeries Seq2Seq

55

Figure 4.25: Predicted vs. target series for a WaveNet one-to-one task on a 50s
random sample from the test set. MAE= 0.744 and r = 0.175.

Figure 4.26: Predicted vs. target series for a WaveNet many-to-one task on a 50s
random sample from the validation set. MAE= 0.572 and r = 0.504.

On the many-to-one task, WaveNet outperforms other neural network models

in terms of MAE and correlation on sequences from the validation and test sets.

However, like other neural network based approaches, using multiple electrodes does

not yield an increase in performance. Thus, the many-to-one WaveNet is not able to

beat the one-to-one linear regression in the task to forecast ECoG signals.

56

Figure 4.27: Predicted vs. target series for a WaveNet many-to-one task on a 50s
random sample from the test set. MAE= 0.744 and r = 0.175.

4.4 Complete Results

This section contains the complete results from the experiments performed in the

previous section. All results are outlined in Table 4.3 and Table 4.4. Note that

the Linear Regression result in Table 4.4 is the same as the one in Table 4.3. This

is because we use one-to-one Linear Regression to benchmark our performance and

verify the hypothesis that neural networks that have access to more electrodes will be

able to model the structure of the activity in the brain better than simpler models.

Experiment
Description

MAE
(Validation)

Correlation
(Validation)

MAE
(Test)

Correlation
(Test)

Baseline Input
Shifting

0.871 0.005 0.825 -0.014

Linear Regression 0.577 0.479 0.469 0.598
Baseline Neural

Network
0.602 0.385 0.734 0.047

LSTM Encoder-
Decoder

with Teacher Forcing
0.580 0.484 0.742 0.158

Temporal Convolutional
Network

0.585 0.449 0.740 0.0156

WaveNet 0.572 0.504 0.744 0.175

Table 4.3: One-to-one Validation and Testing Results

57

Experiment
Description

MAE
(Validation)

Correlation
(Validation)

MAE
(Test)

Correlation
(Test)

Linear Regression Baseline
(One-to-one)

0.577 0.479 0.469 0.598

Baseline Neural
Network

0.854 0.194 1.01 -0.060

Temporal Convolutional
Network

0.672 0.163 0.771 0.10

WaveNet 0.641 0.378 0.747 0.113

Table 4.4: Many-to-one Validation and Testing Results

Our results show that predicting ECoG electrode signals can be done with varying

degrees of success. While our models perform well when predicting specific samples,

the results on the test set highlight that we are still far away from a generalizable

solution. An interesting aspect of the results is that using more electrodes does not

seem to help our prediction task. Both validation and test set results for many-to-one

prediction are worse than for one-to-one prediction.

We also note the relatively similar performance of the models in terms of MAE on

each individual set. For instance, all neural-network based approaches in Table 4.3

are within 0.030 of each other in the validation set and within 0.012 in the test set.

This suggests that a performance bottleneck is quickly encountered by all models.

This is further discussed in Section 5.1.

Another noteworthy aspect about the results is that Linear Regression, a simpler

model, is able to achieve similar if not better performance than WaveNet. This is

surprising given the complex nature of the data, but could also point to the possibility

that deep learning might not be the best way to model these signals.

The performance of the deep learning models on the validation set compared to

the test set also suggests that our manual hyper-parameter optimization might have

led to slight overfitting, although this is not reflected in the training vs. validation

loss graphs generated for each model during training.

58

Nevertheless, the results outlined above highlight that we were able to meet our

research goals in several ways. First, we were able to use neural networks to extract

trends from future data, which could be used to provide context speech decoding

models like the ones developed by Moses et al. [24]. Second, the trends extracted

by our models could be used by neuroscientists to better understand how the areas

responsible for speech work. Third, since our ECoG data is synchronized with free-

flowing speech we might be able to increase the robustness of speech decoding models.

This aspect is further discussed in Section 5.1.

4.5 Limitations

There are several limitations associated with the current work. Chief among them

is electrode selection. This is because we did not run all the models mentioned in

Section 4.3 on all electrodes in an exhaustive manner. Instead, we selected an elec-

trode based on its performance on linear regression and the common-sense approach

described in section 4.3.2. In our case, the electrode being monitored achieved one

of the lowest MAEs and correlations across all other 114, which made it a good can-

didate for other one-to-one and many-to-one tests. Nevertheless, it is possible that

we chose an electrode that is particularly well-suited for Linear Regression but is not

representative of other electrodes. Similarly, it is possible that the electrode was not

particularly informative in terms of signal-to-noise ratio or that one electrode does

not carry enough signal for this task.

Additionally, exhaustive hyper-parameter optimization was not performed on the

deep learning models used in this study. We attempted using libraries like Wandb [98]

and Hyper-Opt [99], but the MAE score did not prove to be a good enough evaluation

metric to help us find better parameters. This is because the MAE quickly plateaus

during training and stays constant afterwards in relation to this task. It is possible

59

that by using a better evaluation metric we might be able to make more extensive

use of these libraries.

It is also possible that the patient being monitored was not a great fit for this

study. While we analyzed different electrodes across multiple patients in this study

and selected the electrode with index 5 according to performance on baseline models,

we have no information on the health of the patient and whether there are any

physiological factors that might make others a better fit for this study.

60

Chapter 5

Discussion, Future Work, and

Conclusion

5.1 Discussion and Future Work

Our results are promising because they show that forecasting ECoG signals is not

impossible. However, there is still a lot of work to be done in this research area.

While our deep learning models did not perform as expected on the test set, we have

noticed that it is possible to predict the overall trend of the signal, which was one of

the goals of this study.

While brain-to-speech forecasting might not be possible given the performance of

our metrics outlined above, the models developed could be repurposed to improve

speech synthesis from the brain. For instance, one important area of future work is

using the trends generated by the machine learning models discussed above in order

to enhance the functionality and performance of speech neuroprostheses and brain-

to-speech systems like the ones described by Makin et al., Anumanchipalli et al., and

Moses et al..

61

Another avenue for future work is improving current speech prostheses that depend

on technologies like eye tracking or modified computer peripherals using the methods

described above. For example, the trends collected and interpreted by an ECoG or

EEG model could be used to augment text using some form of emotions. While

not perfect, this would increase the expressivity of current devices and pave the way

for the increased adoption of invasive brain-computer interfaces by showcasing their

benefits.

We have noticed that the models used in this work were overwhelmed by the data

provided to them, especially since the many-to-one task showed worse results than

the one-to-one task. Therefore, another important aspect of future work is using

deeper network architectures. Besides WaveNet, most of the networks used in the

study were relatively shallow.

The results also highlight the importance of hyper-parameter optimization. Using

the right loss function or optimizer can have a strong impact on the results. While

we used Adam and MAE, it is possible that other optimizers or loss functions might

provide an easier way for the neural network model to learn the specific amplitudes

in the data. Furthermore, details like the number of hidden units, the size of the

kernel, and the number of dilations can also have a strong impact on the performance

of the models. This is why an exhaustive hyper-parameter search using a library like

Wandb or Hyper-Opt could make an important difference [98, 99].

It is also possible that the ECoG signals used might contain too many concurrent

signals to properly predict them. As a result, it might be useful to add a downstream

validation task in order to guide the neural network towards extracting a specific type

of signal from the input data for the purpose of sequence-to-sequence prediction. For

example, we could leverage the audio waveforms from speech to create a model that

attempts speech synthesis and signal forecasting simultaneously. This could allow

62

the neural network to better understand the relationship between the signals and

differentiate the signal relevant signal from the noise.

Another aspect of this study that could be improved is using normalized data

instead of binned data. Binned data is downsampled and is an average of the signal

found in the normalized data, which could reduce the amount of useful information

that is fed to the neural network. One caveat to this note is that we attempted to

forecast normalized data, but one of the issues we ran into is that the neural network

models had trouble converging in many instances.

Last but not least, our forecasting approach could also be improved. Rather than

attempting to predict full sequences, the problem could be simplified by focusing

on predicting single data points in the future. This might be more adequate for

the models described in Section 4.3 and could provide an easier starting point. After

obtaining good results with forecasting singular time steps at different delays, it might

be easier to find a way to forecast full sequences.

5.2 Conclusion

Our work highlights the difficult nature of ECoG time series forecasting. We build on

the work of other speech neuroprosthesis researchers in order to develop models that

can forecast ECoG signals from real patients. Our goal is to find models that can

forecast these signals so that they can be used for applications in speech forecasting,

context and performance improvement for current brain-to-speech decoder models,

and neuroscience.

We show that WaveNet is the most promising deep learning model tested, but

forecasting results are mixed. While some samples can be easily predicted, others

remain elusive. Furthermore, we also find that using multiple electrodes to predict

63

the signal of one does not improve the performance of the models. Last but not least,

we find that simpler models like linear regression can do surprisingly well on this task.

We also suggest several areas of future work. One of them is related to using the

fact that neural network models like the Long Short-Term Memory (LSTM) Encoder-

Decoder model, the Temporal Convolutional Network (TCN) model, and WaveNet

can capture the trend of the signal relatively well. This can improve speech synthesis

by providing more context to the decoding models.

We also propose a way to improve ECoG signal forecasting. We reason that it is

possible that the ECoG signals used in this study encode multiple signals related to

movement, speech, and other activities related to brain activation. As a result of this,

forecasting ECoG signals may be impossible because they encode multiple activities

simultaneously. In order to overcome this problem, we suggest using a downstream

prediction task to ”guide” the neural network model during training, similar to the

model used by Makin et al. [25]. An example of such a task is forcing the neural

network to predict both ECoG brain signals and audio waveforms in parallel. During

inference, the neural network would simply use the states gained from attempting

to predict speech in order to predict ECoG signals. We believe that this approach

might reduce the complexity of the problem, allowing us to better understand speech

generation and production in the human brain but also forecast it in a reliable way.

Doing so will allow us to unlock superpowers not available to any humans before us.

64

Appendix A

Code Availability

The code used to implement and test the models referenced in this work is available

at: https://github.com/theodormarcu/brain2brain

65

Bibliography

[1] K. A. Moxon and G. Foffani, “Brain-machine interfaces beyond neuroprosthet-
ics,” Neuron, vol. 86, no. 1, pp. 55–67, 2015.

[2] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wol-
paw, “Bci2000: a general-purpose brain-computer interface (bci) system,” IEEE
Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1034–1043, 2004.

[3] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham,
G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan,
“Brain-computer interface technology: a review of the first international meet-
ing,” IEEE transactions on rehabilitation engineering, vol. 8, no. 2, pp. 164–173,
2000.

[4] D. Coyle, Brain-Computer Interfaces: Lab Experiments to Real-World
Applications, ser. ISSN. Elsevier Science, 2016. [Online]. Available: https:
//books.google.com/books?id=b3i0CwAAQBAJ

[5] L. Garcia, V. Lespinet-Najib, M. Menoret, B. Claverie, J. M. Andr, and
R. Ron-Angevin, “Chapter 69 - braincomputer interface: Analysis of different
virtual keyboards for improving usability,” in Neuroergonomics, H. Ayaz and
F. Dehais, Eds. Academic Press, 2018, pp. 269 – 270. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780128119266000695

[6] P. R. Kennedy and R. A. Bakay, “Restoration of neural output from a paralyzed
patient by a direct brain connection,” Neuroreport, vol. 9, no. 8, pp. 1707–1711,
1998.

[7] P. R. Kennedy, R. A. Bakay, M. M. Moore, K. Adams, and J. Goldwaithe,
“Direct control of a computer from the human central nervous system,” IEEE
Transactions on rehabilitation engineering, vol. 8, no. 2, pp. 198–202, 2000.

[8] A. Kübler, A. Furdea, S. Halder, E. M. Hammer, F. Nijboer, and B. Kotchoubey,
“A brain–computer interface controlled auditory event-related potential (p300)
spelling system for locked-in patients,” Annals of the New York Academy of
Sciences, vol. 1157, no. 1, pp. 90–100, 2009.

[9] J. R. Wolpaw, D. J. McFarland, G. W. Neat, and C. A. Forneris, “An eeg-based
brain-computer interface for cursor control,” Electroencephalography and clinical
neurophysiology, vol. 78, no. 3, pp. 252–259, 1991.

66

https://books.google.com/books?id=b3i0CwAAQBAJ
http://www.sciencedirect.com/science/article/pii/B9780128119266000695

[10] E. E. Fetz, “Operant conditioning of cortical unit activity,” Science, vol. 163,
no. 3870, pp. 955–958, 1969.

[11] ——, “Volitional control of neural activity: implications for brain–computer in-
terfaces,” The Journal of physiology, vol. 579, no. 3, pp. 571–579, 2007.

[12] V. Vinge, “Technological singularity,” in VISION-21 Symposium sponsored by
NASA Lewis Research Center and the Ohio Aerospace Institute, 1993, pp. 30–
31.

[13] N. Bostrom and A. Sandberg, “Cognitive enhancement: methods, ethics, regu-
latory challenges,” Science and engineering ethics, vol. 15, no. 3, pp. 311–341,
2009.

[14] S. Bavishi, J. Rosenthal, and M. Bockbrader, “Chapter 17 - neuroprosthetics,”
in Rehabilitation After Traumatic Brain Injury, B. C. Eapen and D. X.
Cifu, Eds. Elsevier, 2019, pp. 241 – 253. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780323544566000177

[15] J. S. Brumberg, K. M. Pitt, and J. D. Burnison, “A noninvasive brain-computer
interface for real-time speech synthesis: The importance of multimodal feed-
back,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 26, no. 4, pp. 874–881, 2018.

[16] P. Nuyujukian, J. A. Sanabria, J. Saab, C. Pandarinath, B. Jarosiewicz, C. H.
Blabe, B. Franco, S. T. Mernoff, E. N. Eskandar, J. D. Simeral et al., “Cortical
control of a tablet computer by people with paralysis,” PloS one, vol. 13, no. 11,
2018.

[17] G. K. Anumanchipalli, J. Chartier, and E. F. Chang, “Speech synthesis from
neural decoding of spoken sentences,” Nature, vol. 568, no. 7753, pp. 493–498,
2019.

[18] S. Koch Fager, M. Fried-Oken, T. Jakobs, and D. R. Beukelman, “New and
emerging access technologies for adults with complex communication needs and
severe motor impairments: State of the science,” Augmentative and Alternative
Communication, vol. 35, no. 1, pp. 13–25, 2019.

[19] E. F. Chang and G. K. Anumanchipalli, “Toward a speech neuroprosthesis,”
Jama, vol. 323, no. 5, pp. 413–414, 2020.

[20] J. S. Brumberg, P. R. Kennedy, and F. H. Guenther, “Artificial speech synthe-
sizer control by brain-computer interface,” in Tenth Annual Conference of the
International Speech Communication Association, 2009.

[21] J. S. Brumberg, E. J. Wright, D. S. Andreasen, F. H. Guenther, and P. R.
Kennedy, “Classification of intended phoneme production from chronic intra-
cortical microelectrode recordings in speech motor cortex,” Frontiers in neuro-
science, vol. 5, p. 65, 2011.

67

http://www.sciencedirect.com/science/article/pii/B9780323544566000177

[22] X. Pei, D. L. Barbour, E. C. Leuthardt, and G. Schalk, “Decoding vowels and
consonants in spoken and imagined words using electrocorticographic signals in
humans,” Journal of neural engineering, vol. 8, no. 4, p. 046028, 2011.

[23] C. Herff, D. Heger, A. De Pesters, D. Telaar, P. Brunner, G. Schalk, and
T. Schultz, “Brain-to-text: decoding spoken phrases from phone representations
in the brain,” Frontiers in neuroscience, vol. 9, p. 217, 2015.

[24] D. A. Moses, M. K. Leonard, J. G. Makin, and E. F. Chang, “Real-time decoding
of question-and-answer speech dialogue using human cortical activity,” Nature
communications, vol. 10, no. 1, pp. 1–14, 2019.

[25] J. G. Makin, D. A. Moses, and E. F. Chang, “Machine translation of cortical
activity to text with an encoder–decoder framework,” Nature Publishing Group,
Tech. Rep., 2020.

[26] B. Blaus, “Blausen. com staff (2014),,” Medical gallery of Blausen Medical, 2014.

[27] A. Wrench, “The mocha-timit articulatory database,” 1999.

[28] M. Angrick, C. Herff, E. Mugler, M. C. Tate, M. W. Slutzky, D. J. Krusienski,
and T. Schultz, “Speech synthesis from ecog using densely connected 3d convo-
lutional neural networks,” Journal of neural engineering, vol. 16, no. 3, 2019.

[29] A. A. Wrench, “A multichannel articulatory database and its application for
automatic speech recognition,” in In Proceedings 5 th Seminar of Speech Pro-
duction. Citeseer, 2000.

[30] N. Kriegeskorte, “Deep neural networks: a new framework for modeling biological
vision and brain information processing,” Annual review of vision science, vol. 1,
pp. 417–446, 2015.

[31] A. Kuruvilla and R. Flink, “Intraoperative electrocorticography in epilepsy
surgery: useful or not?” Seizure, vol. 12, no. 8, pp. 577–584, 2003.

[32] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag problems,”
in Advances in neural information processing systems, 1997, pp. 473–479.

[33] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” CoRR, vol.
abs/1803.01271, 2018. [Online]. Available: http://arxiv.org/abs/1803.01271

[34] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model
for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[35] N. E. Crone, A. Sinai, and A. Korzeniewska, “High-frequency gamma oscillations
and human brain mapping with electrocorticography,” Progress in brain research,
vol. 159, pp. 275–295, 2006.

68

http://arxiv.org/abs/1803.01271

[36] K. Volkova, M. A. Lebedev, A. Kaplan, and A. Ossadtchi, “Decoding movement
from electrocorticographic activity: A review,” Frontiers in Neuroinformatics,
vol. 13, 2019.

[37] J. Yeo, M. Youssef, and A. Agrawala, “A framework for wireless lan monitor-
ing and its applications,” in Proceedings of the 3rd ACM workshop on Wireless
security, 2004, pp. 70–79.

[38] M. Schulz, P. Klapper, M. Hollick, E. Tews, and S. Katzenbeisser, “Trust the
wire, they always told me! on practical non-destructive wire-tap attacks against
ethernet,” in Proceedings of the 9th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, 2016, pp. 43–48.

[39] E. S. Nurse, S. E. John, D. R. Freestone, T. J. Oxley, H. Ung, S. F. Berkovic, T. J.
O’Brien, M. J. Cook, and D. B. Grayden, “Consistency of long-term subdural
electrocorticography in humans,” IEEE Transactions on Biomedical Engineering,
vol. 65, no. 2, pp. 344–352, 2017.

[40] V. Gilja, C. Pandarinath, C. H. Blabe, P. Nuyujukian, J. D. Simeral, A. A.
Sarma, B. L. Sorice, J. A. Perge, B. Jarosiewicz, L. R. Hochberg et al., “Clinical
translation of a high-performance neural prosthesis,” Nature medicine, vol. 21,
no. 10, p. 1142, 2015.

[41] B. Jarosiewicz, A. A. Sarma, D. Bacher, N. Y. Masse, J. D. Simeral, B. Sorice,
E. M. Oakley, C. Blabe, C. Pandarinath, V. Gilja et al., “Virtual typing by people
with tetraplegia using a self-calibrating intracortical brain-computer interface,”
Science translational medicine, vol. 7, no. 313, pp. 313ra179–313ra179, 2015.

[42] C. Kapeller, P. Gergondet, K. Kamada, H. Ogawa, F. Takeuchi, R. Ortner,
R. Prueckl, A. Kheddar, J. Scharinger, and C. Guger, “Online control of a hu-
manoid robot through hand movement imagination using csp and ecog based
features,” in 2015 37th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC). IEEE, 2015, pp. 1765–1768.

[43] R. K. Shepherd, M. N. Shivdasani, D. A. Nayagam, C. E. Williams, and P. J.
Blamey, “Visual prostheses for the blind,” Trends in biotechnology, vol. 31,
no. 10, pp. 562–571, 2013.

[44] A. P. Finn, D. S. Grewal, and L. Vajzovic, “Argus ii retinal prosthesis system:
a review of patient selection criteria, surgical considerations, and post-operative
outcomes,” Clinical ophthalmology (Auckland, NZ), vol. 12, p. 1089, 2018.

[45] P. Ghasemi, T. Sahraee, and A. Mohammadi, “Closed-and open-loop deep
brain stimulation: methods, challenges, current and future aspects,” Journal
of biomedical physics & engineering, vol. 8, no. 2, p. 209, 2018.

[46] A. Fasano, A. Daniele, and A. Albanese, “Treatment of motor and non-motor
features of parkinson’s disease with deep brain stimulation,” The Lancet Neurol-
ogy, vol. 11, no. 5, pp. 429–442, 2012.

69

[47] G. K. Bergey, M. J. Morrell, E. M. Mizrahi, A. Goldman, D. King-Stephens,
D. Nair, S. Srinivasan, B. Jobst, R. E. Gross, D. C. Shields et al., “Long-term
treatment with responsive brain stimulation in adults with refractory partial
seizures,” Neurology, vol. 84, no. 8, pp. 810–817, 2015.

[48] H. S. Mayberg, A. M. Lozano, V. Voon, H. E. McNeely, D. Seminowicz,
C. Hamani, J. M. Schwalb, and S. H. Kennedy, “Deep brain stimulation for
treatment-resistant depression,” Neuron, vol. 45, no. 5, pp. 651–660, 2005.

[49] J. D. Kropotov, “Chapter 4.2 - neurofeedback,” in Functional Neuromarkers
for Psychiatry, J. D. Kropotov, Ed. San Diego: Academic Press, 2016, pp.
247 – 266. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/B9780124105133000164

[50] T. Brandmeyer and A. Delorme, “Meditation and neurofeedback,” Frontiers in
psychology, vol. 4, p. 688, 2013.

[51] J. Bu, K. D. Young, W. Hong, R. Ma, H. Song, Y. Wang, W. Zhang, M. Hamp-
son, T. Hendler, and X. Zhang, “Effect of deactivation of activity patterns re-
lated to smoking cue reactivity on nicotine addiction,” Brain, vol. 142, no. 6, pp.
1827–1841, 2019.

[52] J. F. Lubar, “Neurofeedback for the management of attention deficit disorders.”
2003.

[53] L. Oberman and A. Pascual-Leone, “Chapter 4 - changes in plasticity across
the lifespan: Cause of disease and target for intervention,” in Changing Brains,
ser. Progress in Brain Research, M. M. Merzenich, M. Nahum, and T. M. V.
Vleet], Eds. Elsevier, 2013, vol. 207, pp. 91 – 120. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780444633279000163

[54] M. Akcakaya, B. Peters, M. Moghadamfalahi, A. R. Mooney, U. Orhan, B. Oken,
D. Erdogmus, and M. Fried-Oken, “Noninvasive brain–computer interfaces for
augmentative and alternative communication,” IEEE reviews in biomedical en-
gineering, vol. 7, pp. 31–49, 2013.

[55] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.
Vaughan, “Brain–computer interfaces for communication and control,” Clinical
neurophysiology, vol. 113, no. 6, pp. 767–791, 2002.

[56] U. Orhan, K. E. Hild, D. Erdogmus, B. Roark, B. Oken, and M. Fried-Oken,
“Rsvp keyboard: An eeg based typing interface,” in 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012,
pp. 645–648.

[57] B. Peters, M. Higger, F. Quivira, S. Bedrick, S. Dudy, B. Eddy, M. Kinsella,
T. Memmott, J. Wiedrick, M. Fried-Oken et al., “Effects of simulated visual

70

http://www.sciencedirect.com/science/article/pii/B9780124105133000164
http://www.sciencedirect.com/science/article/pii/B9780444633279000163

acuity and ocular motility impairments on ssvep brain-computer interface per-
formance: an experiment with shuffle speller,” Brain-Computer Interfaces, vol. 5,
no. 2-3, pp. 58–72, 2018.

[58] M. J. Sjerps, N. P. Fox, K. Johnson, and E. F. Chang, “Speaker-normalized
sound representations in the human auditory cortex,” Nature communications,
vol. 10, no. 1, pp. 1–9, 2019.

[59] H. G. Yi, M. K. Leonard, and E. F. Chang, “The encoding of speech
sounds in the superior temporal gyrus,” Neuron, vol. 102, no. 6, pp. 1096 –
1110, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0896627319303800

[60] F. Chollet, Deep Learning with Python, 1st ed. USA: Manning Publications
Co., 2017.

[61] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Advances in neural information processing systems, 2014,
pp. 3104–3112.

[62] C. Pandarinath, P. Nuyujukian, C. H. Blabe, B. L. Sorice, J. Saab, F. R.
Willett, L. R. Hochberg, K. V. Shenoy, and J. M. Henderson, “High
performance communication by people with paralysis using an intracortical
brain-computer interface,” eLife, vol. 6, p. e18554, feb 2017. [Online]. Available:
https://doi.org/10.7554/eLife.18554

[63] Y. Jeon, C. S. Nam, Y.-J. Kim, and M. C. Whang, “Event-related (de) synchro-
nization (erd/ers) during motor imagery tasks: Implications for brain–computer
interfaces,” International Journal of Industrial Ergonomics, vol. 41, no. 5, pp.
428–436, 2011.

[64] L. H. Arnal, D. Poeppel, and A.-L. Giraud, “A neurophysiological perspective on
speech processing in the neurobiology of language,” in Neurobiology of language.
Elsevier, 2016, pp. 463–478.

[65] A. Llorens, A. Trébuchon, C. Liégeois-Chauvel, F. Alario et al., “Intra-cranial
recordings of brain activity during language production,” Frontiers in psychology,
vol. 2, p. 375, 2011.

[66] N. Crone, L. Hao, J. Hart, D. Boatman, R. P. Lesser, R. Irizarry, and B. Gordon,
“Electrocorticographic gamma activity during word production in spoken and
sign language,” Neurology, vol. 57, no. 11, pp. 2045–2053, 2001.

[67] N. E. Crone and L. Hao, “Functional dynamics of spoken and signed
word production: A case study using electrocorticographic spectral analysis,”
Aphasiology, vol. 16, no. 9, pp. 903–927, 2002. [Online]. Available:
https://doi.org/10.1080/02687030244000383

71

http://www.sciencedirect.com/science/article/pii/S0896627319303800
https://doi.org/10.7554/eLife.18554
https://doi.org/10.1080/02687030244000383

[68] R. T. Canolty, M. Soltani, S. S. Dalal, E. Edwards, N. F. Dronkers, S. S. Nagara-
jan, H. E. Kirsch, N. M. Barbaro, and R. T. Knight, “Spatiotemporal dynamics
of word processing in the human brain,” Frontiers in neuroscience, vol. 1, p. 14,
2007.

[69] V. L. Towle, H.-A. Yoon, M. Castelle, J. C. Edgar, N. M. Biassou, D. M. Frim,
J.-P. Spire, and M. H. Kohrman, “Ecog gamma activity during a language task:
differentiating expressive and receptive speech areas,” Brain, vol. 131, no. 8, pp.
2013–2027, 2008.

[70] R. P. Lesser, N. E. Crone, and W. Webber, “Subdural electrodes,” Clinical neu-
rophysiology, vol. 121, no. 9, pp. 1376–1392, 2010.

[71] R. Cooper, A. Winter, H. Crow, and W. G. Walter, “Comparison of subcorti-
cal, cortical and scalp activity using chronically indwelling electrodes in man,”
Electroencephalography and clinical neurophysiology, vol. 18, no. 3, pp. 217–228,
1965.

[72] U. Hason, A. Goldstein, Z. Zada, E. Ham, C. Kim, and G. Choe, “Hasson Lab,
Princeton Neuroscience Institute.”

[73] K. A. Ludwig, R. M. Miriani, N. B. Langhals, M. D. Joseph, D. J. Anderson,
and D. R. Kipke, “Using a common average reference to improve cortical neuron
recordings from microelectrode arrays,” Journal of neurophysiology, vol. 101,
no. 3, pp. 1679–1689, 2009.

[74] J. O. Smith, Spectral Audio Signal Processing. Website, accessed May 1, 2020,
online book, 2011 edition.

[75] U. D. S. Processing, “Unit 6: Windowing,” https://www.phon.ucl.ac.uk/
courses/spsci/dsp/window.html, [Online; accessed 01-May-2020].

[76] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in
Neural networks: Tricks of the trade. Springer, 2012, pp. 9–48.

[77] M. A. Nielsen, Neural networks and deep learning. Determination press San
Francisco, CA, USA, 2015, vol. 2018.

[78] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[79] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[80] Z. Mariet and V. Kuznetsov, “Foundations of sequence-to-sequence modeling for
time series,” in The 22nd International Conference on Artificial Intelligence and
Statistics, 2019, pp. 408–417.

[81] P. J. Brockwell, R. A. Davis, and S. E. Fienberg, Time series: theory and meth-
ods: theory and methods. Springer Science & Business Media, 1991.

72

https://www.phon.ucl.ac.uk/courses/spsci/dsp/window.html
http://www.deeplearningbook.org

[82] J. H. Stock and M. W. Watson, “Vector autoregressions,” Journal of Economic
perspectives, vol. 15, no. 4, pp. 101–115, 2001.

[83] L. Zhu and N. Laptev, “Deep and confident prediction for time series at uber,”
in 2017 IEEE International Conference on Data Mining Workshops (ICDMW).
IEEE, 2017, pp. 103–110.

[84] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean absolute
error (mae)?–arguments against avoiding rmse in the literature,” Geoscientific
model development, vol. 7, no. 3, pp. 1247–1250, 2014.

[85] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accu-
racy,” International journal of forecasting, vol. 22, no. 4, pp. 679–688, 2006.

[86] J. Lee Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation
coefficient,” The American Statistician, vol. 42, no. 1, pp. 59–66, 1988.

[87] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al., “Scipy 1.0:
fundamental algorithms for scientific computing in python,” Nature methods,
vol. 17, no. 3, pp. 261–272, 2020.

[88] A. Amidi and S. Amidi. (2017) A detailed example of how to use data
generators with keras. [Online]. Available: https://stanford.edu/∼shervine/
blog/keras-how-to-generate-data-on-the-fly

[89] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A struc-
ture for efficient numerical computation,” Computing in Science Engineering,
vol. 13, no. 2, pp. 22–30, March 2011.

[90] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine
learning in python,” the Journal of machine Learning research, vol. 12, pp. 2825–
2830, 2011.

[91] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of brain
mechanisms,” Cornell Aeronautical Lab Inc Buffalo NY, Tech. Rep., 1961.

[92] F. Chollet et al., “Keras,” https://keras.io, 2015.

[93] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[94] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078,
2014.

73

https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
https://keras.io

[95] F. Chollet, “A ten-minute introduction to sequence-to-
sequence learning in keras,” Available at https://blog.keras.io/
a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
(2017/09/29).

[96] J. Eddy, “Time series seq2seq,” Available at https://github.com/JEddy92/
TimeSeries Seq2Seq (2020/04/12).

[97] P. Remy, “Keras temporal convolutional network,” Available at https://github.
com/philipperemy/keras-tcn (2020/01/12).

[98] L. Biewald, “Experiment tracking with weights and biases,” 2020, software
available from wandb.com. [Online]. Available: https://www.wandb.com/

[99] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library for opti-
mizing the hyperparameters of machine learning algorithms,” in Proceedings of
the 12th Python in science conference. Citeseer, 2013, pp. 13–20.

74

https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://github.com/JEddy92/TimeSeries_Seq2Seq
https://github.com/philipperemy/keras-tcn
https://www.wandb.com/

